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ABSTRACT 

The limitations of a traditional morphology-based classification of Foraminifera have been demonstrated by 

molecular phylogenetic studies for several years now. Despite the accumulation of molecular data, no alternative 
higher-level taxonomic system incorporating these data has been proposed yet. Here, we present a new 

supraordinal classification of Foraminifera based on an updated SSU rDNA phylogeny completed with the 

description of major morphological trends in the evolution of this group. According to the new system, multi-

chambered orders are grouped in two new classes: Tubothalamea and Globothalamea. Naked and single-

chambered Foraminifera possessing agglutinated or organic-walled tests are arranged into a paraphyletic 

assemblage of “monothalamids”. The new system maintains some multi-chambered calcareous orders, such as 

Rotaliida, Miliolida, Robertinida and Spirillinida, although their definitions have been modified in some cases to 

include agglutinated taxa. The representatives of the planktonic order Globigerinida are tentatively included in 

the order Rotaliida. The agglutinated Textulariida are probably paraphyletic. The position of the order Lagenida 

is uncertain because reliable molecular data are only available for one species. The new classification system 

separates orders or families, which differ in basic chamber shapes, prevailing mode of coiling and distance 
between successive apertures. It appears that these features correspond better to the main evolutionary trends in 

Foraminifera than wall composition and structure, both used in traditional classification. 
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1. Introduction 

The classification of Foraminifera has a long history going back to the beginning of the 19th century and the 

work of d'Orbigny (1826) who established the order Foraminifera and proposed the first taxonomic system based 

on the growth plan of foraminiferal tests. d'Orbigny's successors have developed diverse systems based on the 

morphology of fossil and recent tests, differing principally by the importance given to form and chamber 
arrangement versus wall composition and structure (reviewed in Cifelli, 1990). The primary division of 

Foraminifera into single-chambered Monothalamia and multi-chambered Polythalamia (Schultze, 1854) was 

progressively replaced by a classification based on the presence or absence of pores (Reuss, 1861; Carpenter et 

al., 1862). In the 20th century, wall characteristics gained more and more importance and became the main 

criterion to distinguish higher-level groups in Foraminifera (Pokorny, 1963; Loeblich and Tappan, 1964; 

Hohenegger and Piller, 1975). In the seminal work of Loeblich and Tappan (1988, 1989, 1992), Foraminifera 

were divided into 12 suborders that mainly differ by mineralogical and ultrastructural features of the test wall. In 

the most recent modifications of this classification (Sen Gupta, 1999; Mikhalevich, 2004; Kaminski, 2005), the 

number of orders (or classes/subclasses) increased to 16, but the foundations of this system remained unchanged 

(Table 1). 

A few important attempts were carried out to group suborders into higher level taxa (Hohenegger and Baal, 
2004; Hohenegger, 2011). The noticeable classification proposed by Mikhalevich (1998, 2000, 2004) and 

Mikhalevich and Debenay (2001) was based on a “macrosystem” dividing Foraminifera into seven classes and 

http://dx.doi.org/10.1016/j.marmicro.2013.04.002
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resting upon “the whole organization of the test” rather than composition and ultrastructure of the test wall. This 

system revealed some interesting tendencies in the evolution of Foraminifera mainly based on morphological test 

patterns. Many taxonomic studies of Foraminifera concerned revisions of lower-level taxa (e.g., Hottinger, 1980; 

Gudmundson, 1994; Revets, 1996) but only a few tried to build up a more general system, such as the 

classification of agglutinated foraminiferans, whose updated versions are published on a regular basis (Kaminski, 

2004). 

The lack of progress in higher-level classifications of Foraminifera was mainly due to difficulties in inferring 

evolutionary relationships between major groups defined exclusively by morphological features and the sheer 

number of taxa involved. Despite the excellent fossil record, phylogenetic schemes of foraminiferal evolution are 

limited to textural and morphologic characters of tests (e.g., Cushman, 1948; Grigelis, 1978; Tappan and 

Loeblich, 1988; Vachard et al., 2010). This situation has changed with the advent of molecular studies that shed 
new light on the evolution of Foraminifera (Pawlowski, 2000; Bowser et al., 2006). The majority of molecular 

phylogenies were based on analyses of partial SSU and LSU rDNA sequences (Holzmann and Pawlowski, 2000; 

Pawlowski, 2000, 2002a,b, 2003). Because of their unusual length (>3000 nucleotides) complete SSU sequences 

were only obtained for a few species, mainly representatives of the order Rotaliida (Pawlowski et al., 1996; 

Schweizer et al., 2008). Molecular phylogenies were also inferred from actin (Flakowski et al., 2005), tubulin 

(Habura et al., 2006) and RNA polymerase (Longet and Pawlowski, 2007), but the number of species analyzed 

in these studies was very small. Recent analysis of combined sequence data confirmed major trends in the 

evolution of Foraminifera inferred from single gene phylogenies (Groussin et al., 2011). However, up to now no 

formal attempt has been made to modify the higher-level classification of Foraminifera by including molecular 

data. 

Here, we propose a new higher-level system of Foraminifera, based on molecular data. We present an 
updated version of a SSU rDNA phylogeny based on complete sequences obtained from representatives of 

almost all foraminiferal orders, including 23 new sequences. We discuss this phylogeny with reference to other 

multigene studies and we describe the basic morphological features for new molecular groupings. 

 

2. Material and methods 

2.1. DNA extraction, amplification, cloning and sequencing 

DNA was extracted using guanidine lysis buffer (Pawlowski, 2000), and each extraction was performed with 

a single specimen. The DNA collection numbers, collection sites and taxonomic references for all analyzed 

species are given in Table 2. PCR amplifications of the complete SSU rDNA were performed using several 

primer pairs (Table 3). The amplified PCR products were purified using High Pure PCR Purification Kit (Roche 

Diagnostics), cloned with the TOPO TA Cloning Kit (Invitrogen) following the manufacturer's instructions and 

transformed into competent Escherichia coli. Sequencing reactions were performed using the BigDye 
Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) and analyzed on a 3130XL Genetic Analyser 

(Applied Biosystems). The new sequences reported in this paper were deposited in the EMBL/GenBank data 

base and their accession numbers are listed in Table 2. 

2.2. Phylogenetic analyses 

The obtained sequences were aligned to an existing database using Seaview vs 4.3.3. (Gouy et al., 2010). 

After elimination of highly variable regions, 1904 sites were left for analysis. Based on MEGA5 (Tamura et al., 

2011), a GTR + G model of evolutionary changes was selected. A phylogenetic tree was constructed using 

maximum likelihood (ML) method using RAxML as implemented in BlackBox (Stamatakis et al., 2008). 

Bayesian inference (BI) was performed with MrBayes 3.2.1 (Huelsenbeck and Ronquist, 2001). The analysis 

consisted of four simultaneous chains that were run for 10,000,000 generations, and 10,000 trees were sampled, 

2000 of which were discarded as burn-in. Posterior probabilities at all nodes were estimated for the remaining 
trees. 

The results of phylogenetic analyses were compared to morphological trends revealed from fundamental 

shell features characterized all analyzed taxa, including unilocularity vs. bi- and multilocularity, basic shape of 

chambers, and composition of the wall (organic, agglutinated and calcareous). These features were indicated in a 

phylogenetic tree and discussed based on recent knowledge on morphogenetic patterns responsible for the 

foraminiferal shell formation. 
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3. Results and discussion 

3.1. Molecular phylogeny 

The ML and BI analyses of complete SSU rDNA sequences show congruent results (Fig. 1). The 

foraminiferal tree comprises two large clades of multi-chambered species. The first multi-chambered clade, 

called here the Globothalamea, is composed of species belonging to the orders Rotaliida, Robertinida and 

Textulariida. Rotaliida form a relatively well-supported clade (81% BV, 0.96 PP) that also includes the 

sequences of planktonic Globigerinida. Robertina arctica, the only representative of the order Robertinida 

branches at the base of Rotaliida, together with Leptohalysis scotti. Another textulariid, Reophax sp. branches 

independently as sister to all Globothalamea, in both ML and BI analyses. The Globothalamea group together in 

all analyses, but their clade is not well supported. This is partly due to the genetic similarity between 

globothalamids and the monothalamous clades A + C that branch as sister group to them. The support for 
Globothalamea is much stronger when the highly divergent sequences are removed and a larger number of sites 

are analyzed. 

The second multi-chambered clade, called here the Tubothalamea, is composed of Miliolida, Spirillinida and 

Ammodiscidae, the latter two groups being represented by the genera Spirillina and Ammodiscus, respectively. 

Spirillina and Ammodiscus form a strongly supported (100%) clade branching as sister to Miliolida. The 

relations within Miliolida are well supported, except for the position of Cornuspira, that branches as sister to 

other species, but without a strong support in both ML and BI analyses. The agglutinated genus Miliammina was 

shown to be related to miliolids in previous studies (Fahrni et al., 1997; Habura et al., 2006) but has not been 

included in our analyses, as the authenticity of its SSU rDNA sequence could not be ascertained. Nevertheless, 

actin and tubulin molecular records (Fahrni et al., 1997; Habura et al., 2006), as well as a clearly tubular shape of 

chambers still support its close affinity to miliolids and the Tubothalamea. 

All multi-chambered species could be placed in one of the two clades, except for the sequence of Glandulina 

antarctica, the only representative of the order Lagenida reliably documented so far. DNA amplification of 

lagenid specimens has very low success rates, even when attempting a fragment of the SSU rDNA that in general 

yields positive results for all other tested groups of Foraminifera. The lack of broader taxon sampling in 

Lagenida makes the accurate establishment of its phylogenetic position difficult. Yet, the sequence of G. 

antarctica is so different from other multi-chambered taxa that Lagenida possibly form a separate group that 

evolved independently from an unknown monothalamous lineage. This is also supported by a different 

morphology of lagenid chambers and the structure of their tests (see below). 

The deep relationships of monothalamous lineages remain unresolved. A few well-supported clades such as 

Bathysiphon argenteus + Micrometula sp. (clade BM), or Psammophaga sp. + Vellaria sp. (clade E) emerged 

already in previous studies based on partial SSU rDNA sequences (Pawlowski et al., 2002a,b). As indicated 

above, clades A and C are always sister to the Globothalamea. Clade BM is positioned at the base of 
Tubothalamea, in agreement with multigene analyses (Groussin et al., 2011). However, the support for this 

relationship is very low. The remaining monothalamous clades and lineages branch at the base of the tree but 

their relationships are not supported. Based on previous protein-coding studies (Flakowski et al., 2005; Longet 

and Pawlowski, 2007), we selected Allogromia sp. + Astrammina rara to root the tree. However, a lack of 

protein coding genes for most of the monothalamous lineages and high divergence of foraminiferal SSU rDNA 

sequences makes the exact positioning of the root uncertain. 

The foraminiferal phylogeny as presented in Fig. 1 is very similar to previously published trees based on 

sequences of partial SSU rDNA (Pawlowski et al., 2002a,b, 2003; Bowser et al., 2006), actin (Flakowski et al., 

2005), tubulin (Habura et al., 2006), and RNA polymerase (Longet and Pawlowski, 2007). It differs from earlier 

SSU rDNA trees (Pawlowski et al., 1997; Pawlowski, 2000) by the placement of Miliolida in the center of the 

tree rather than at its base, shown to be an artifact due to low GC content in miliolid rDNA sequences (Bowser et 
al., 2006). The separation between the two multi-chambered clades Globothalamea and Tubothalamea has been 

already evident in previous analyses of partial SSU rDNA sequences (Pawlowski et al., 2003). Compared to 

these studies, the support for these multilocular clades clearly increased, especially in the case of Globothalamea, 

whose monophyly was not recovered when the fast evolving Tubothalamea were included. Yet, the phylogenetic 

signal in SSU rDNA is insufficient for resolving relationships between the two multi-chambered and single-

chambered clades. Multigene analyses and increased taxon sampling for monothalamous lineages will be 

necessary to improve the resolution at the base of the foraminiferal tree (work in progress). However, molecular 

evidence for the presence of two multi-chambered clades is sufficiently well established to introduce them into 

the new classification of Foraminifera. 
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3.2. Morphological trends 

The phylogenetic clades defined by molecular data were compared to fundamental shell features (represented 

by symbols in Fig. 1). The wall composition of the analyzed taxa shows a complex polyphyletic pattern that 

seems to be useful in defining intermediate rank taxonomic units. The multi-chambered clades of Globothalamea 

and Tubothalamea are primarily defined by globular and coiled tubular chamber shapes, respectively (Fig. 1). 

These important morphological characters are related to the relative distance between successive apertures and 

are associated with two different development patterns (Fig. 2). A summary of morphological and textural 

features characterizing Globothalamea and Tubothalamea is presented in Table 4. 

3.2.1. Chamber shapes 

According to Hottinger (2000), “in order to generalize the broad variety of shell architecture in foraminifera, 

two basic types of protoplasm compartment shapes can be distinguished, a tubular and a non-tubular, more or 
less isotropic, subspherical to subconic one” (p. 69). These two fundamental chamber patterns were retrieved in 

our two multichambered clades. 

The class Tubothalamea is characterized by tubular chambers either throughout ontogeny or in early 

ontogenetic stages (Table 4). Such truly tubular chambers were also called longithalamous (sensu Brasier, 1980), 

emphasizing the elongation of chambers that are “longer than they are wide” (Armstrong and Brasier, 2005). 

Tubular chambers are best developed in small, simple bi-chambered and multi-chambered forms of 

Tubothalamea, which are either agglutinated, like Ammodiscus, Miliammina, or calcareous, like Spirillina or 

Quinqueloculina. In order to shorten axial elongation of tubular chambers, some large miliolids, such as 

Alveolina or Praealveolina, evolved low composite chambers composed of short tubular chamberlets. Other 

complex miliolids shortened the axial elongation of tubular chambers by formation of nearly equidimensional 

chamberlets. However, their early ontogenetic growth stage still preserves a single chamber or series of coiled, 
tubular chambers (see Loeblich and Tappan, 1988; Hottinger, 2006; Hohenegger, 2011). 

Globothalamea possess multi-chambered tests with globular chambers that are often brevithalamous, 

meaning “wider than long” (Armstrong and Brasier, 2005). Small, simple globothalamid tests are always 

constructed by successive growth of globular chambers that are more or less overlapping preceding chambers. 

Chamber shape is species specific and varies from simple globular, more or less inflated, discoid, narrow or 

broad to elongate. Chamber shape also strongly depends on the ontogenetic stage, with early ontogenetic 

chambers being usually more globular. Larger, complex globothalamids exhibit very diverse geometries of 

chamberlets forming composite chambers. 

3.2.2. Bilocular vs multilocular growth 

Although both groups are characterized by multi-chambered tests, some primitive representatives of 

Tubothalamea are bilocular having a tubular second chamber either without or with only rudimentary partitions. 

Such simple bilocular forms appear not only in the order Spirillinida, including agglutinated (Ammodiscina) and 
calcitic (Spirillinina) wall textures but also in porcelaneous Miliolida (Cornuspira). Bilocularity is generally 

missing in Globothalamea because once built, a globular chamber cannot get bigger and thus their only way to 

grow is by adding a new chamber. 

3.2.3. Apertures and their morphogenetic implications 

Fundamentally different chamber shapes are linked to different patterns of aperture formation. In 

Tubothalamea with simple tubular chambers, apertures are located at the end of each chamber and therefore the 

distance between them is maximized (Fig. 2). The apertures are self-defined by the tube end, the latter one being 

determined by addition of a new chamber. Tubothalamea can decrease aperture distance by shortening their 

chambers and additionally either multiplying chamber number in a growth cycle or widening their diameter. 

Globothalamea have a different approach to aperture formation. A new aperture is created mostly at the shortest 

distance from the previous aperture (Topa and Tyszka, 2002; Łabaj et al., 2003; Tyszka and Topa, 2005). This 
minimizes the distance between proloculus and the last aperture and possibly presents some advantages for 

intracellular transportation (Hottinger, 1978; Brasier, 1982; Hohenegger, 1999).  

The aperture is a moving reference for the formation of new foraminiferal chambers (Tyszka and Topa, 2005; 

Tyszka, 2006). The clade Globothalamea comprises Textulariida and Rotaliida that use similar morphogenetic 

mechanisms to create corresponding morphologies, dependent on the self-organization of foraminiferal 

cytoskeleton (Tyszka et al., 2005; Topa et al., 2012). Both orders use the same flabellate, radial pattern of 
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microtubules iteratively shaping every new chamber during its formation. In contrast, Tubothalamea seem to use 

streaming patterns of longitudinal microtubules to stimulate accretionary growth of their tests (Tyszka et al., 

2005; Tyszka, 2006). This is a very different mode of growth adopted by ammodiscids, rzehakinids, and 

miliolids (see De Nooijer et al., 2009). In theory, this growth pattern can be simulated based on the accretionary 

growth models known from larger shells of ammonites, gastropods and bivalves (Raup and Michelson, 1965; 

Okamoto, 1988). 

3.3. New classification of Foraminifera 

Based on updated molecular data and their morphological interpretation, we propose a new higher-level 

classification presented in Appendix 1. In this new system, Foraminifera are considered as a phylum composed 

of three main groups: 

• The class Globothalamea grouping multi-chambered species whose chambers are typically globular; 

• The class Tubothalamea grouping multi-chambered species whose chambers are typically tubular; 

• The paraphyletic assemblage of “monothalamids” grouping all single-chambered species having organic and 

agglutinated walls. 

At the order-level, the new system is relatively conservative. Several traditional orders, such as Rotaliida, 

Miliolida, Spirillinida, and Robertinida are preserved, although their definition has sometimes been modified. In 

the case of Rotaliida, the distinction between Rotaliida and Buliminida (Sen Gupta, 1999), based principally on 

the presence/absence of an internal toothplate, is not justified in view of molecular data (Schweizer et al., 2008). 

Moreover, this previously exclusively benthic order also includes planktonic Foraminifera traditionally classified 

in the order Globigerinida. The grouping of benthic and planktonic species is supported by molecular evidence 

showing a triserial planktonic species branching among benthic rotaliids (Ujiié et al., 2008) and a conspecificity 

of some biserial planktonic species and benthic bolivinids (Darling et al., 2009). The position of other planktonic 
families is difficult to establish because of the heterogeneity of their evolutionary rates (de Vargas et al., 1997, 

1998). As shown in Fig. 1 at least one planktonic family (Globorotaliidae) branches within Rotaliida. The family 

Globigerinidae, for which complete SSU rDNA sequences are not available, also branches within rotaliids in 

some but not all protein-coding gene analyses (Ujiie, unpublished data). 

The orders Miliolida and Spirillinida also need to be redefined. Both orders are traditionally calcareous and 

monophyletic, but in the new system they include some agglutinated genera and therefore cannot be defined by 

wall composition and structure only. However, each of these orders could be divided into suborders 

characterized by different wall features. For example, in the case of Spirillinida, the agglutinated Ammodiscidae 

form a sister group to calcareous spirillinids, and therefore could be considered as a separate suborder 

Ammodiscina, as suggested by Mikhalevich (1992), as well as Mikhalevich and Debenay (2001). The situation 

is more complex in the case of porcelaneous Miliolida that comprise the agglutinated genus Miliammina (Fahrni 

et al., 1997; Habura et al., 2006). Although the position of this genus could not be established with certainty in 
SSU rDNA trees, proteincoding genes indicate that it branches between Cornuspira and other miliolids (Habura 

et al., 2006; Groussin et al., 2011). If we accept the hypothesis of a reversal from calcareous to agglutinated tests 

(Galloway, 1933; Habura et al., 2006), and if other agglutinated miliolids branch with Miliammina, the order 

Miliolida could be split into several suborders, each characterized by distinctive morphological features. 

Mikhalevich and Kaminski (2008) have included the agglutinated miliamminids and rzehakinids within the order 

Schlumberinida, which they considered ancestral to the order Miliolida. 

In the new system, the two single-chambered orders Allogromiida and Astrorhizida have been replaced by a 

paraphyletic assemblage of monothalamids. The distinction of these two orders characterized by an organic or 

agglutinated wall, respectively, could not be maintained because the transition between organic and agglutinated 

walls takes place in different monothalamous lineages (Pawlowski et al., 2002a,b, 2003). The number of these 

lineages is rapidly growing, with many new phylotypes identified in environmental DNA samples (Lecroq et al., 
2011; Pawlowski et al., 2011) and many new species described from high-latitude and deep-sea habitats, where 

monothalamids are particularly abundant (e.g. Pawlowski et al., 2002a,b; Gooday et al., 2004). Currently, 

22monothalamous clades, including 8 environmental lineages have been identified in marine environments 

(Pawlowski et al., 2011) and additionally 4 clades have been described from freshwater and soil samples 

(Lejzerowicz et al., 2010). Most of these clades are represented by partial SSU rDNA data only. Their 

classification is therefore still in progress, but for sure their richness and genetic diversity by far exceed some of 

the better known multi-chambered orders. 
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Another order that possibly represents a paraphyletic assemblage is the Textulariida. Although most 

textulariids branch together at the base of Rotaliida (Fig. 1) their grouping is not well supported. The sequences 

of the genera Reophax and Leptohalysis often branch independently. This is also the case of some other genera, 

for which only partial SSU rDNA sequences have been analyzed (Bowser et al., 2006). There is certainly no 

support for splitting multi-chambered agglutinated Foraminifera into the orders Lituolida, Trochamminida and 

Textulariida, as proposed by Loeblich and Tappan (1989). The Lituolida as defined by them are a polyphyletic 

group, with some genera belonging to Miliolida (Miliammina) or Spirillinida (Ammodiscus). Moreover, the 

genera Trochammina and Textularia are so closely related in molecular phylogenies (Fig. 1) that it would be 

difficult to consider them as members of different orders. There are some simple transitional agglutinated 

Foraminifera, such as Trochamminoides, included by Loeblich and Tappan (1989) to the suborder Textulariina, 

which show a proloculus followed by spirally coiled and undivided tubular second chamber, switching later to 
numerous more or less globular chambers. Such transitional forms Grzybowski (1898) regarded to be descended 

from Ammodiscus. It is likely that these morphotypes should be included to Tubothalamea; nevertheless, this 

should be verified by molecular data. 

Within the remaining orders, Robertinida and Carterinida have been placed in the Globothalamea, based on 

an analysis of Robertina arctica (Fig. 1) and unpublished molecular data obtained for Carterina. The 

Silicoloculinida have been included into Miliolida, based on the quinqueloculine chamber arrangement 

characterizing the genus Miliammellus, the unique representative of this order (Loeblich and Tappan, 1988). 

Three orders (Lagenida, Fusulinida and Involutinida) remain as incertae sedis. Concerning Lagenida, there is 

only one complete SSU rDNA sequence available derived from G. antarctica, whose position is not well 

established. The partial SSU rDNA sequences of Marginulopsis and Lenticulina published previously (Bowser et 

al., 2006) could not be extended. Additional sequence data of lagenids are needed to decide whether this order 
forms a separate multichambered class or belongs to one of the two classes described here. Lagenida differ from 

them by mode of growth and terminal chamber formation. They partly maximize the distance between apertures 

as is the case in Tubothalamea. On the other hand, their chambers are rather globular. A common feature of 

Lagenida is an ontogenetically stable terminal aperture combined with more or less tapering chamber shapes. 

Such terminal apertures and chambers are known from uncoiling, rectilinear parts of some Globothalamea 

(Ammobaculites, Spiroplectinata, etc.). However, in Globothalamea terminal apertures are not ontogenetically 

stable and tend to appear during their final growth stages. Calcareous Lagenida have agglutinated 

homologs/analogs, constructing similar chamber and shell morphologies. Therefore, Mikhalevich (1992, 2005), 

Mikhalevich and Debenay (2001) included calcareous and agglutinated forms into the class Nodosariata. Due to 

lack of molecular data we prefer an incertae sedis status for this group. 

Fusulinida are an extinct order, and therefore its placement can be based only on an analysis of 

morphological data. Mikhalevich and Debenay (2001) included them in Rotaliata, but later studies (Mikhalevich, 
2006, 2009) based on comparative morphological analysis placed the superorder Fusulinoida in the class 

Miliolata. Some authors proposed a close relationship of certain fusulinids to Textulariida (Rigaud, 2012). A 

detailed analysis of fusulinid early chamber development and internal foraminal lines of communication would 

be necessary to verify these two hypotheses. The Involutinida have been considered as closely related to 

Spirillinida (Sen Gupta, 1999), however, as there is no molecular data available, we prefer to leave it as incertae 

sedis. 

From an evolutionary perspective, the new system assumes that the major step in the evolution of 

Foraminifera is the transition from a single-chambered to a multi-chambered test. As shown in Fig. 1, this 

transition occurred at least twice, in the stem lineages of Globothalamea and Tubothalamea, and probably also in 

the stem lineage leading to Lagenida. The traditional view of successive evolution of Foraminifera from organic-

walled to agglutinated and further to calcareous lineages (Cushman, 1935, 1948; Tappan and Loeblich, 1988) is 
challenged by molecular evidence for multiple origins of agglutinated and calcareous walls. The transformation 

from organic to agglutinated walls (brown symbol in Fig. 1) occurred several times in monothalamous lineages 

(Pawlowski et al., 2002a,b; Bowser et al., 2006). Many monothalamid clades comprise both organic and 

agglutinated species and some, e.g. Astrorhiza limicola, may even change the nature of their test wall depending 

on environmental conditions (Cedhagen and Tendal, 1989). However, the presence of an agglutinated wall seems 

to be a prerequisite to the formation of a multi-chambered (polythalamous) test. With respect to our available 

molecular data (Fig. 1), multi-chambered agglutinated tests evolved independently in lineages leading to 

Tubothalamea (Ammodiscus), and Globothalamea (Reophax), probably from an agglutinated monothalamous 

lineage. The calcareous wall appeared at least five times independently (blue rhomboid symbol in Fig. 1). 

Remarkably, each time a different type of calcareous wall was developed. The three orders with a calcareous 

bilamellar wall (Rotaliida, Buliminida and Globigerinida) form one clade. The other calcareous orders, including 
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the aragonitic Robertinida, the calcitic monolamellar Lagenida, the imperforate Miliolida, and the 

monocrystalline Spirillinida form independent monophyletic groups. 

In many respects, our system is complementary to previous classifications. The supra-ordinal groupings 

correspond well to the phylogenetic scheme presented by Tappan and Loeblich (1988). The distinction between 

single-chambered and multi-chambered foraminiferans has been proposed several times, starting with d'Orbigny 

(1826) who introduced the class Monostegua for all unilocular species, including planktonic Orbulina and 

organic-walled Gromia, considered at that time as a foraminifer. Avnimelich (1952) introduced a suborder 

Monothalamia for tubular foraminiferans, but included genera such as Amphitrema and Diplophrys that are no 

longer considered to be Foraminifera. Our system states the importance of the position and form of foraminiferal 

apertures and is therefore similar to the one developed by Mikhalevich (1998). The main differences concern our 

paraphyletic assemblage of monothalamids that replaces Mikhalevich's unilocular classes Lagynata and 
Astrorhizata, and the Tubothalamea that are regrouped by Mikhalevich and Debenay (2001) in the classes 

Spirillinata and Miliolata. Moreover, although the composition of our class Globothalamea is almost identical to 

Mikhalevich's class Rotaliata, her subdivision into superorders and orders does not correspond to the 

relationships inferred from molecular data. 

The most important fact that distinguishes our system from all previous classifications is that it is solidly 

anchored in molecular phylogenetic data. Phylogenetic analyses based on sequences of SSU rDNA, actin, beta-

tubulin and RNA-polymerase genes show a relatively congruent view of foraminiferal macroevolution. In all 

phylogenetic trees, monothalamous species appear as a basal paraphyletic group, from which multi-chambered 

lineages emerged two or three times independently. Although this system still lacks molecular data for many 

taxa and genes, the major groups are well identified and the molecular view of the macroevolution of 

Foraminifera as presented here will not undergo substantial changes with the addition of further sequences. 

There are several taxonomic issues that remain still open. The phylogenetic position of Lagenida remains 

uncertain due to a very limited taxon sampling and lack of agglutinated polythalamous lineages that associate to 

them. The polyphyly of Globigerinida as suggested by some earlier studies (Darling et al., 1997; Pawlowski, 

2000) has to be tested. Finally, the paraphyly of Textulariida shall be confirmed by a more detailed analysis of 

multi-chambered agglutinated species. All these studies will require a much larger taxon sampling, especially in 

the case of Textulariida, Miliolida and Robertinida. New phylogenetic markers are also necessary to resolve the 

deep phylogenetic relationships at the base of multi-chambered clades. We expect that further development of 

phylogenomic studies of Foraminifera (Burki et al., 2010; Sierra et al., 2013) will generate new genomic data 

that could be used to test the phylogenetic foundations of the present classification. 
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Appendix 1. New high-rank phylogenetic classification of Foraminifera 

Phylum Foraminifera (d'Orbigny, 1826) 

Monothalamids 

Single chamber (monothalamous) test with an organic or agglutinated wall; the group comprises all genera 

traditionally included into the orders Allogromiida and Astrorhizida, as well as the deep-sea giant 
Xenophyophorea; it also includes freshwater and marine “naked” amoeboid species and environmental clades 

with unknown morphology (see Pawlowski et al., 2011); the diversity of this mainly unfossilized group is poorly 

known and has been largely overlooked in micropaleontologically oriented foraminiferal research. 

Remarks: The group is paraphyletic, i.e. it comprises the ancestor of all Foraminifera including 

monothalamous and polythalamous groups. Further phylogenetic analyses are needed to subdivide it into 

independent monothalamous lineages. 
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Class Tubothalamea classis nov 

Diagnosis: Bi- or multi-chambered test with tubular chambers at least in the juvenile stage; wall agglutinated 

or calcareous; in ancestral forms the test is composed of a spherical proloculus followed by a spirally enrolled 

tubular chamber; more evolved forms have multi-chambered tests; 

Molecular characteristics: relatively short SSU rRNA gene (2289–2866 nt) and very low GC content (b30%). 

Stratigraphic range: Lower Cambrian — recent. 

Order Miliolida (Delage and Hérouard, 1896) emend 

Test bi- or multi-chambered, chambers tubular or elongate, some with complex internal structures adapted to 

host algal endosymbionts; wall generally imperforate, calcareous of high magnesium calcite with randomly 

oriented crystals refracting light in all directions and resulting in a porcelaneous appearance of the test; may be 

agglutinated or siliceous in some taxa (Miliammina, Miliammellus). 

Order Spirillinida (Hohenegger and Piller, 1975) emend 

Test composed of proloculus followed by an enrolled tubular chamber, aperture terminal;wall of low 

magnesiumcalcite, optically a single crystal in Spirillinidae and Patellinidae; wall agglutinated in 

Ammodiscidae. 

Class Globothalamea classis nov 

Diagnosis: Test multi-chambered, typically trochospirally enrolled but may be triserial, biserial or uniserial; 

chambers globular or crescent-shaped in early stage; wall agglutinated or calcareous. 

Molecular characteristics: SSU rRNA gene length averaging 3500 nt (3000–4000 nt) and GC content of 

about 40%; a conserved motive in the variable region 41f of the SSU rDNA (Pawlowski and Lecroq, 2010). 

Stratigraphic range: Lower Cambrian — recent. 

Order Rotaliida (Delage and Hérouard, 1896) 

Wall of low magnesium calcite, optically radial, bilamellar, perforate; some with internal canal system; 

possibly include all or most of planktonic globigerinids. 

Order Robertinida (Loeblich and Tappan, 1984) 

Wall of hyaline, perforate, optical radial aragonite; chambers with internal partitions in modern taxa. 

Order “Textulariida” (Delage and Hérouard, 1896) (P) 

Wall agglutinated, with foreign particles attached to organic lining or cemented by low magnesium calcite; 

possibly paraphyletic group. The term “Textulariida” is here used only partially in the sense of the definition 

given by Loeblich and Tappan (1988), and includes the most of the Lituolida, the Loftusiida, and the Textularida 

(sensu stricto), of Kaminski (2004). 

Order Carterinida (Loeblich and Tappan, 1981) 

Wall composed of rodlike spicules of low magnesium calcite held in organic lining; chambers numerous, 

trochospirally coiled. 

Incertae sedis orders 

Order Lagenida (Delage and Hérouard, 1896) 

Test single- or multi-chambered, chambers uniserial, biserial, or planispirally coiled; wall of low magnesium 

calcite, monolamellar; possibly an independent class. 

Order Fusulinida (Wedekind, 1937) 

Extinct; test multi-chambered wall microgranular, calcareous; possibly could be partly attached to 

Globothalamea and Tubothalamea. 

Order Involutinida (Hohenegger and Piller, 1977) 
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Test composed of proloculus and spirally coiled tubular second chamber; wall aragonitic; possibly belong to 

Tubothalamea. 
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Table 1 

Recent morphology-based high-rank classifications of Foraminifera. 

Loeblich and  
Tappan (1988) 

Sen Gupta (1999) Mikhalevich (2004) Kaminski (2005) 

Order 
Foraminiferida 

Suborders 

Allogromiina 

Textulariina 

Fusulinina 

Involutinina 

Spirillinina 

Carterinina 

Miliolina 

Silicoloculinina 

Lagenina 
Robertinina 

Globigerinina 

Rotaliina 

 

 

Order 
Foraminifera 

Orders 

Allogromiida 

Astrorhizida 

Lituolida 

Trochamminida 

Textulariida 

Fusulinida 

Miliolida 

Carterinida 

Spirillinida 
Lagenida 

Rotaliida 

Buliminida 

Globigerinida 

Involutinida 

Robertinida 

Silicoloculinida 

Order 
Foraminifera 

Classes 

Astrorhizata 

Lagynana 

Astrorhizana 

Spirillinnata 

Ammodiscana 

Spirillinana 

Miliolata 

Miliamminana 

Miliolana 
Nodosariata 

Hormosinana 

Nodosariana 

Rotaliata 

Textulariana 

Rotaliana 

Globigerinana 

Order 
Foraminifera 

Orders 

Allogromiina 

Astrorhizida 

Lituolida 

Loftusiida 

Textulariida 

Fusulinida 

Miliolida 

Silicoloculinida 

Involutinida 
Robertinida 

Favusellida 

Spirillinida 

Lagenida 

Buliminida 

Rotaliida 

Globigerinida 
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Table 2 

Details about sampling and sequencing of investigated specimens. 

 
Foram Barcoding website=http://forambarcoding.unige.ch. 

IOPAN=http://www.iopan.gda.pl/projects/biodaff/Foram_Pawl/foram_pawl.htm. 
a New sequences are marked in bold. 
 
 
 

Table 3 

PCR primers used for amplification (1st PCR) and reamplification (2nd PCR) of complete SSU rRNA genes. 
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Table 4 

Characteristics of new classes of Foraminifera. 

 
Tubothalamea Globothalamea 

Chamber basic shape 

Chambers in large complex tests 

Number of chambers 

Chambers 

Aperture  

LCPa (foraminal distance) 

Wall composition 

 

 

 

 

Calcite/aragonite secretion 

(De Nooijer et al., 2009) 

 

Mode of life 

 

 

Stratigraphic range 

Tubular and related 

Proloculus followed by undivided coiled tubular chamber 

Bilocular or multilocular 

Never or slightly overlapping 

End of tube (areal marginal in large complex forms) 

Maximized 

• Agglutinated with organic matrix 

 

• Calcareous 

– Porcelaneous high Mg calcite 

– Mono-, polycrystalline low Mg 

• Not in situ - in vacuoles transported to wall 

• Non-lamellar 

• No secondary laminas 

• Benthic 

 

 

Cambrian — recent 

Globular and related 

Proloculus followed by globular chamber 

Multilocular 

Overlapping in various degree 

All types: e.g. basal, areal, terminal, etc. 

Minimized 

• Agglutinated with organic or organic/calcareous low 

Mg matrix 

• Calcareous 

– Calcite/aragonite 

– Hyaline low Mg with accessory high Mg 

• In situ 

• Bilamelar 

• Secondary laminas 

• Benthic 

• Planktonic 

• Benthic/Planktonic 

Cambrian — recent 

a LCP — local communication path, as a distance between successive foramina. 
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Fig. 1. Bayesian phylogenetic tree (GTR + G model) showing the phylogeny of Foraminifera inferred from 53 

complete SSU rDNA sequences. Numbers at nodes indicate (from left to right) posterior probabilities (BI) and 

bootstrap values (ML). The tree was rooted with Allogromia sp., A. triangularis and A. rara, as suggested by 

protein phylogenies. Color symbols indicate stem lineages of Globothalamea and Tubothalamea, as well as 
groups having agglutinated and calcareous wall. 
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Fig. 2. Fundamental morphogenetic features identified within Tubothalamea and Globothalamea. A. 

Tubothalamea have elongated, tubular chamber(s) constructed either from the agglutinated organic composite 
(AOC) or the calcitic layer (CL) composed of calcareous–organic composite (porcelaneous tests). The foraminal 

distance (f–a) between an aperture (a) and the last foraminum (f) is maximized; B.Globothalamea show globular 

or semi-globular chambers constructed either from AOC or agglutinated calcareous composite (ACC) or 

calcitic/aragonitic layer (CL). The foraminal distance (f–a) between an aperture (a) and the last foraminum (f) is 

minimized. Secondary calcitic layer (s) is limited to calcareous tests. “Purple” organic structures (OOL, POS, 

AOC, ACC) serve as organic matrix, partly responsible for shaping chambers. 


