Home page
Main page Staff Research Centres
Arkadiusz (Arek) Derkowski

E-mail:  ndderkow@cyfronet.pl

Institute of Geological Sciences Polish Academy of Sciences
Research Centre in Cracow
Senacka 1, 31-002 Kraków, Poland

          +48 12 3705 226 (Office)
          +48 12 422 19 10 (Switchboard)

Personal website:  
Scientific interests:
clay minerals chemistry, structure, and thermal transformations; physicochemical properties of mineral surfaces; black shales; K-Ar isotope dating; mineralogical applications in oil and gas exploration; geomaterials; petrophysics and mineral physics

Current Projects Students, PostDocs & Colaborators Education & Research Experience Publications Industrial Applications
Current projects
  • Dehydration, rehydration, dehydroxylation, and rehydroxylation of clay minerals. Funded under ATLAB project by RegPot program within EU 7th Framework Programme

  • "Sweet Spots". Mineral and organic matter properties in application to gas- and oil-shales. Co-funded by the Ministry of Science and Higher Education and Chevron ETC, Houston, TX, USA.

  • Targeting Shale Gas with Advanced Mineralogy and Geochemistry (SGMG). Funded by Chevron ETC, Houston, TX, USA.

  • Argon retention and diffusion in layered silicates: reactions and conditions affecting K-Ar and Ar-Ar geochronology. Funded internally by the Institute of Geological Sciences, PAS.

  • Methodology of measuring effective and ineffective porosity and methane retention in shales. Funded by Chevron ETC, Houston, TX, USA.

  • Deciphering the Ediacaran environment from unaltered clastic sedimentary rocks of the East European Craton (PI: Jan Srodon, IGSPAS, Krakow, Poland)

  • Authigenic clay minerals as paleoenvironmental indicators in potential Martian analogue lakes (PI: Thomas Bristow, NASA Ames, CA, USA)

Community services
Since 2015 - The Clay Mineral Society, Chair of the Publications Committee.
Since 2011 - A reviewer for Clays and Clay Minerals, Clay Minerals, American Mineralogist, Applied Clay Science, Geology, Int. J. of Mineral Processing, Fuel, Energy and Fuels, Marine and Petroleum Geology, and other journals.

PhD students:
Artur Kuligiewicz (M.Sc. 2011, Jagiellonian Univ. of Krakow), since 2012
Tomasz Topór (M.Sc. 2011, Jagiellonian Univ. of Krakow), since 2012
Malgorzata Lempart (M.Sc. 2012, Univ. of Technology, Krakow), since 2015
Paweł Ziemiański (M.Sc. 2016, Univ. of Technology, Krakow), since 2016

MSc students:
Paweł Ziemiański (shared with the AGH University of Science and Technology), 2015-2016
Katarzyna Kałahurska (shared with the AGH University of Science and Technology), 2015-2016
Utpalendu Kuila (Ph.D. 2012, Colorado School of Mines, Golden, CO, USA), 2013-2014

June, 2013
D.Sc. (habilitation) in Earth sciences; Polish Academy of Sciences, Krakow (Poland)
Sept., 2003
Ph.D. in Earth sciences; Jagiellonian University of Krakow (Poland)
June, 1999
M.Sc. in geological sciences; Jagiellonian University of Krakow (Poland)
Work experience
  • Since 03/2016 - Institute of Geological Sciences, Polish Academy of Sciences, Krakow (Poland);
    Deputy Director for Research

  • Since 01/2012 - Institute of Geological Sciences, Polish Academy of Sciences, Krakow (Poland);
    associate professor, head of the Clay Minerals Laboratory (since 7/2013)

  • 7/2007- 12/2014 - Chevron ETC, Houston Geo-Technical Center (USA);
    scientific consultant (on site / full-time, and remotely / part-time)

  • 6/2009-10/2010 - University of Alberta, Edmonton, AB (Canada); postdoctoral researcher

  • 10/2008-03/2009 - Baker Hughes Co., Calgary, AB (Canada); senior mineralogist.

  • 3/2006-12/2007 - University of California, Riverside, CA (USA); postdoctoral researcher.

  • 1/2004-3/2006 - Institute of Geological Sciences, Polish Academy of Sciences, Krakow (Poland); researcher
Recent teaching activity
McCarty D.K. and Derkowski A. - "Mineralogy, Analysis, and Formation Evaluation" a 2-day course for Chevron Co., USA

Peer-reviewed publications (excluding conference abstracts)
* asterisk denotes my students and post-docs

Derkowski A., and Kuligiewicz A.* (2016) Rehydroxylation in smectites and other clay minerals observed in-situ with a modified thermogravimetric setup. Submitted to Applied Clay Science.
Marynowski L., Pisarzowska A., Derkowski A., Rakociński M., Szaniawski R., Środoń J., and Cohen A.S. (2016) Influence of palaeoweathering on trace metal concentrations and environmental proxies in black shales. Submitted to Palaeogeography, Palaeoclimatology, Palaeoecology.
Kuligiewicz A.* and Derkowski A. (2016) Tightly bound water in smectites. Submitted to American Mineralogist.
Szczerba M., Kuligiewicz A.*, Derkowski A., Gionis V., Chryssikos G.D., and Kalinichev, A.G. (2016) Structure and dynamics of water-smectite interfaces: Hydrogen bonding and the origin of the sharp O-Dw/O-Hw infrared band from molecular simulations. Clays and Clay Minerals, in press.
Topór T.*, Derkowski A., Kuila U.*, Fischer T.B., and McCarty D.K. (2016) Dual liquid porosimetry: porosity measurement method for oil and gas bearing shales. Fuel, 183, 537-549.
Drits V.A., Derkowski A., Sakharov B.A., and Zviagina B.B. Experimental evidence of the formation of intermediate phases during transition of kaolinite into metakaolinite. American Mineralogist, in review.
Derkowski A. and Marynowski L. (2016) Reactivation of cation exchange capacity in black shales. International Journal of Coal Geology, 158, 65-77.
Bojanowski M.J., Jaroszewicz E., Košir A., Łoziński M., Marynowski L., Wysocka A., and Derkowski A. (2016) Root-related rhodochrosite and concretionary siderite formation in oxygen-deficient conditions induced by a ground-water table rise. Sedimentology, 63, 523-551.
Kuligiewicz A.*, Derkowski A., Emmerich K., Christidis G.E., Tsiantos C., Gionis V., and Chryssikos G.D. (2016) Measuring the layer charge of dioctahedral smectite by O-D vibrational spectroscopy. Clays and Clay Minerals, 63, 443-456.
Čavajda V., Uhlík P., Derkowski A., Čaplovičová M., Madejová J., Mikula M., and Ifka T. (2015) Influence of milling and sonication on the crystal structure of talc. Clays and Clay Minerals, 63, 311-327.
McCarty D.K., Theologou P.N., Fischer T.B., Derkowski A., Stokes M.R., and Ollila A. (2015) Mineral-chemistry quantification and petrophysical calibration for multimineral evaluations: A nonlinear approach. AAPG Bulletin, 99, 1371-1397.
Zeelmaekers E., Honty M., Derkowski A., Środoń, J., De Craen M., Vandenberghe N., Adriaens R. and Wouters, L. (2015) Qualitative and quantitative mineralogical composition of the Rupelian Boom Clay in Belgium. Clay Minerals, 50, 249-272.
Szczerba M., Derkowski A., Kalinichev A.G., and Środoń J. (2015) Molecular modeling of the effects of 40Ar recoil in illite particles on their K-Ar isotope dating. Geochimica et Cosmochimica Acta, 159, 162-176.
Kuligiewicz A.*, Derkowski A., Szczerba M., Gionis V., and Chryssikos G.D. (2015) Water-smectite interface by infrared spectroscopy. Clays and Clay Minerals, 63, 15-29.
Derkowski A., Środoń J., and McCarty D.K. (2015) Cation exchange capacity and water content of opal in sedimentary basins: example from the Monterey Formation, California. American Mineralogist, 100, 1244-1256.
Drits V.A. and Derkowski A. (2015) Kinetic behavior of partially dehydroxylated kaolinite. American Mineralogist, 100, 883-896.
Lee S, Fischer T.B., Stokes R.M., Klingler R.J., Ilavsky J., McCarty D.K., Wigand M.O., Derkowski A., and Winans R.E. (2014) Dehydration effect on pore size, porosity, and fractal parameters of shale rocks: USAXS study. Energy and Fuels, 28, 6772-6779.
Kuila U.*, McCarty D.K., Derkowski A., Fischer T.B., Topor T.*, and Prasad M. (2014) Nano-scale texture and porosity of organic matter and clay minerals in gas shales. Fuel, 135, 359-373.
Derkowski A., Szczerba M., Środoń J., and Banaś M. (2014) Radiogenic Ar retention during solid-state clay minerals transformation. Geochimica et Cosmochimica Acta, 128, 236-248.
Kuila U., McCarty D.K., Derkowski A., Fischer T.B., and Prasad M. (2013) Total porosity measurement in gas shales by the water immersion porosimetry (WIP) method. Fuel, 117, B, 1115-1129.
Derkowski A., Bristow T.F., Wampler J.M., Środoń J, Marynowski L., Elliott W.C., and Chamberlain C.P. (2013) Hydrothermal alteration of the Ediacaran Doushantuo Formation in the Yangtze Gorges area (South China). Geochimica et Cosmochimica Acta, 107, 279-298.
Zorski T., Jarzyna J., Derkowski A., and Środoń J. (2013) Well logging in the world of shale gas plays - review of the logging methods. Prz. Geol., 61, 424-434. (in Polish with English abstract)
Zorski T., Jarzyna J., Derkowski A., and Środoń J. (2013) Well logging in the world of shale gas plays - interpretative models and specific applications in the shale gas research. Prz. Geol., 61, 478-488. (in Polish with English abstract)
Drits V.A., McCarty D.K., and Derkowski A. (2012) Mixed-layered structure formation during trans-vacant Al-rich illite dehydroxylation. American Mineralogist, 97, 1922-1938.
Derkowski A. and Bristow T.F. (2012) On the problems of total specific surface area and cation exchange capacity measurements in organics-rich sedimentary rocks. Clays and Clay Minerals, 60, 348-362.
Drits V.A., Derkowski A., and McCarty D.K. (2012) Kinetics of partial dehydroxylation in dioctahedral 2:1 layer clay minerals. American Mineralogist, 97, 930-950.
Derkowski A., Drits V.A., and McCarty D.K. (2012) Nature of rehydroxylation in dioctahedral 2:1 layer clay minerals. American Mineralogist, 97, 610-629.
Derkowski A., Drits V.A., and McCarty D.K. (2012) Rehydration in a dehydrated-dehydroxylated smectite in environment of low water vapor content. American Mineralogist, 97, 110-127.
Kuila U., Prasad M., Derkowski, A., and McCarty D.K. (2012) Compositional Controls on Mudrock Pore-Size Distribution: An Example from Niobrara Formation. SPE Conference Paper, 160141-MS, pp. 16.
Bristow T.F., Bonifacie M., Derkowski A., Eiler J.M. and Grotzinger J.P. (2011) A hydrothermal origin for isotopically anomalous cap dolostone cements from South China. Nature, June 2 2011, 747, 68-72.
Drits V.A., Derkowski A., and McCarty D.K. (2011) Kinetics of thermal transformation of partially dehydroxylated pyrophyllite. American Mineralogist, 96, 1054-1069.
Drits V.A., Derkowski A., and McCarty D.K. (2011) New insight into the structural transformation of partially dehydroxylated pyrophyllite. American Mineralogist, 96, 153-171.
Raiswell R., Reinhard C.T., Derkowski A., Owens, J., Bottrell S.H., Anbar A.D., Lyons T.W. (2011) Formation of syngenetic and early diagenetic iron minerals in the late Archean Mt. McRae Shale, Hamersley Basin, Australia: New insights on the patterns, controls and paleoenvironmental implications of authigenic mineral formation. Geochimica et Cosmochimica Acta, 75, 1072-1087.
Derkowski A. and McCarty D.K. (2010) ChemRock-BestRock: Advanced Tools for Formation Evaluation. bLog Formation Evaluation Network Newsletter - Chevron ETC, 1(4), 5-8, feature article.
Drits V.A., Ivanovskaya T.A., Sakharov B.A., Zvyagina B.B., Derkowski A., Gor'kova N.V., Pokrovskaya E.V., Savichev A.T., and Zaitseva T.S. (2010) Nature of the Structural and Crystal-Chemical Heterogeneity of the Mg-Rich Glauconite (Riphean, Anabar Uplift). Lithology and Mineral Resources, 45(6), 555-576.
Szczerba M.S., Środoń J., Skiba M., Derkowski A. (2010) One-dimensional structure of exfoliated polymer-layered silicate nanocomposites: A polyvinylpyrrolidone (PVP) case study.  Applied Clay Science, 47 (3‑4), 235-241.
Derkowski A., Środoń J., Franus W., Uhlik P., Banaś M., Zieliński G., Čaplovičová M., Franus M. (2009) Partial dissolution of glauconitic samples: implications for the methodology of K-Ar and Rb-Sr dating. Clays and Clay Minerals, 57, 531-554.
Bristow T.F., Kennedy M., Derkowski A., Droser M., Jiang G., Creaser R. (2009) Paleoenvironments of the earliest animal fossils. Proceedings of the National Academy of Sciences of the USA, 106(32):13190-5.
Środoń J., Zeelmaekers E., Derkowski A. (2009) The charge of component layers of illite-smectite in bentonites and the nature of end-member illite. Clays and Clay Minerals, 57, 650-672.
Derkowski A., Franus W., Waniak-Nowicka H., Czímerová A. (2007) Textural properties vs. CEC and EGME retention of Na-X zeolite prepared from fly ash at room temperature. Int. J. Mineral Processing, 82, 57-68.
Kacprzak A., Derkowski A. (2007) Cambisols developed from cover-beds in the Pieniny Mts. (southern Poland) and their mineral composition. Catena, 71, 292-297.
Derkowski A., Michalik M. (2007) Statistical approach to the transformation of fly ash into zeolites. Mineralogia Polonica, 38(1), 47-69.
Derkowski A., Franus W., Beran E., Czímerová A. (2006) Properties and potential applications of zeolitic materials produced from fly ash using simple method of synthesis. Powder Technology, 166, 47-54.
Derkowski A. and Franus W. (2004) Properties of Na-X zeolite materials produced from coal fly ash by low temperature and hydrothermal methods of synthesis. Polish Journal of Environmental Studies, 13 (III), 28‑30.
Derkowski A. (2002) Experimental transformation of volcanic glass from Streda nad Bodrogom (SE Slovakia). Mineralia Slovaca, 35(1), 35-39.
Derkowski A. (2002) Microwave oven in synthesis of Na-zeolites from fly ash. Preliminary results. Mineralogia Polonica, 33(1), 81-94.

Industrial Applications - brief description

1.  Integrated mineralogical-geochemical tool calculating petrophysical properties for the Formation Evaluation analysis.
The programs that use a non-linear optimization engine were designed to (A) optimize the bulk elemental composition of the sample with the quantitative phase analysis results to obtain individual mineral chemical composition (B) distribute minor and trace elements into minerals, and (C) calculate fundamental wireline log petrophysical parameters of individual minerals in an oil reservoir that can be used in wireline log mineral modeling program. When applied in Chevron ETC under the BestRockTM name, the program output produces the ComposerTM Excel Macro file that combines individual minerals into composite mineral end-points that can be chosen by the log analyst user based on weighted average concentrations of mineralogy, chemistry and associated petrophysical properties.

2.  MinStatTM system of statistical calculations and a computer program as a tool for the mineral modeling in the Formation Evaluation.
The set of programs provide constraints describing relationships between minerals in an oil reservoir. The programs were designed for a manual or automatic calculation of mineral inequalities and for the multiple regression model for two or more (up to 10) mineral concentrations.

3.  Methodology for CEC and TSSA measurement.
The bulk rock cation exchange capacity (CEC) and total specific surface area (TSSA) are mineral properties important in oil exploration.
The current methods of their measurement were adjusted and limitations determined. An effect of water and EGME adsorption, and Co‑hexamine cation exchange was explained for samples rich in opals, kerogen, zeolites, gypsum, etc., and introduced as a routine approach in commercial applications.

4. Water Immersion Porosity (WIP) and Dual-Liquid Porosity (DLP) of shales.
Development of a technique for total and effective porosity measurements in gas shale samples. WIP and DLP are quick and simple methods based on a complete water and kerosene saturation combined with thermogravimetry and the mineral-chemical analysis (as above). When combined with gas adsorption techniques, the measurement reveals the wetability and pore size distribution in kerogen and mineral matrix. The WIP and DLP techniques avoid problems identified in other porosity measurement techniques available for shale samples (GRI, MICP).

5. PetroLog - reporting and calculation software for mineralogical and chemical data, including CEC, water adsorption, rock petrophysical properties, and clay minerals speciation. The software is used for daily routine reporting at Chevron ETC laboratories.


© 2016 Instytut Nauk Geologicznych PAN