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A new approach to modeling of foraminiferal shells

Jarosław Tyszka and Paweł Topa

Abstract.—The emergence of shell forms in the growth of foraminifera is an essential problem in
the morphogenesis of these microorganisms. We present a model of foraminiferal shells that applies
a moving-reference system. Previous models have referred to fixed-reference axes and have ne-
glected apertures. Our model focuses on real morphologic characteristics and follows stepwise nat-
ural biological processes. It introduces apertures based on minimization of the local communica-
tion path and applies three parameters, which are either predetermined or selected at random from
given ranges. Expression of stochastic parameters mimics phenotypic variability of a shell. We also
present a detailed description of the method with examples of simulated shells and the first step
toward analyses of the theoretical morphospace. The morphospace is divided into certain regions
(phases) separated by transitional planes (phase transitions). Further prospects for foraminiferal
modeling, which should focus on more in-depth models based on realistic intracellular dynamics,
are also presented.
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Introduction

Foraminifera, like many organisms, grow
by a process of discrete, stepwise additions of
elements to an already existing morphology.
Although there has been spectacular progress
in defining molecular relationships between
different foraminiferal taxa, and our knowl-
edge of morphology of recent and fossil fo-
raminifera is substantial, we still do not know
how genetic codes are translated into actual
chamber shapes and overall shell patterns. To
understand this better, we need to construct
more realistic models of morphogenetic pro-
cesses.

The emergence of shell patterns during the
growth of foraminifera is an essential problem
in the morphogenesis of these microorgan-
isms. A majority of foraminifers are built of
chambers (Fig.1), which are cavities contain-
ing the protoplasm and surrounded (envel-
oped) by a firm wall (Hottinger 1986, 2000;
Lipps 1993). This firm, easily fossilizable wall
(shell) and the widespread occurrence of fo-
raminifera within marine deposits make them
an extremely useful group of microfossils for
biostratigraphic and paleoecologic studies.
Depending on the group, a foraminiferal shell
may be made of organic compounds, sand

grains and other particles cemented (aggluti-
nated) together, or secreted crystalline calci-
um carbonates. Foraminiferal shells occur in
an enormous variety of shapes (see Loeblich
and Tappan 1987). The shape of a shell results
from growth processes and mostly depends
on chamber form, location of chambers, and
type of aperture (primary opening within the
shell).

Foraminifera can be divided into three in-
formal groups corresponding to the trend of
increasing shell complexity: (1) unilocular
shells; (2) simple multilocular (polythala-
mous) shells (Fig. 1); and (3) complex (poly-
thalamous) shells with chambers divided into
smaller chamberlets and/or having complex
wall structure (see Hottinger 1978, 1986, 2000;
Lipps 1993; Hohenegger 1999). Multilocular
foraminifera enlarge in a discrete process of
serial chamber additions (Fig. 1).

Theoretical morphology is an important
tool in morphodynamics (Seilacher 1991).
Modeling of foraminifers started very early
with the classical work of Berger (1969), which
appeared just a few years after the first pub-
lication on theoretical morphology of accre-
tive coiled shells (Raup and Michelson 1965)
and the first mathematical models of plant de-
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FIGURE 1. External (A) and internal (B–D) views of the multilocular uniserial foraminifer Pseudonodosaria humilis
with basic terminology used in the text. B, MinLOC—minimum line of communication (after Brasier 1982). C,
GCP—global communication path. D, LCP—local communication path; ascending order of chamber numbering
represents succession from the oldest to the youngest final chamber. Shell length 5 0.44 mm. See text for further
explanation.

velopment (Lindenmayer 1968). Nonetheless,
so far only simple regular morphologies (e.g.
planispiral, helicoidal, uncoiled) have been
simulated, and these do not express the com-
plexity of foraminiferal shell patterns (see
Signes et al. 1993; McGhee 1999). Thus, it is
worthwhile to find an alternative approach for
constructing a theoretical morphospace of
these organisms (Topa and Tyszka 2002). The
general aim is to find essential growth rules
and to gain a better understanding of the pro-
cesses responsible for the creation of shell pat-
terns and their incredible variability. This
knowledge should help explain the function-
ality of various shell characters and verify evo-
lutionary relationships among foraminifera.
The systematics of foraminifera is based on
shell morphology (e.g., shell composition and
microstructure, chamber form and arrange-
ment, aperture type). Therefore, theoretical
shell morphology can help verify selected tax-
onomic rules. This paper summarizes previ-
ous foraminiferal models using a fixed-refer-
ence frame and presents in detail a new ap-
proach based on a moving-reference frame.

Fixed-Reference Models
of Foraminiferal Shells

Research on the morphogenesis of forami-
niferal shells started with the seminal mono-

graph of Thomson (1919), ‘‘On Growth and
Form,’’ but the first formal model was pre-
sented just over three decades ago by Berger
(1969), who created the first theoretical mor-
phospace of foraminifera. This morphospace
was based on three parameters (Fig. 2):

1. [q-ratio]—the ratio between successive
chamber radii (Ri);

2. [a-angle]—‘‘angle of advance,’’ which is the
angle between the lines connecting the cen-
ter of the shell with two successive cham-
ber midpoints;

3. [o-lap]—‘‘amount of overlap’’ between two
successive chambers, which is used to cal-
culate a distance between centers of these
two chambers, i.e., d 5 Ri/[o-lap].

In the model, the shell is fixed to a point that
defines the center of the shell. The model rep-
resents a simple step-by-step rotation of a cir-
cle with a certain amount of overlap and ex-
pansion of circle radius (Ri). This model sim-
ulates isometric growth (all three parameters
are held constant through ontogeny) and is
confined to planispiral shells composed of cir-
cular chambers (Fig. 2) (see Scott 1974).

Signes et al. (1993) designed a four-dimen-
sional theoretical morphogenetic model based
on two basic assumptions: the shape of cham-
bers in the shell remains constant with
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FIGURE 2. Construction of a planispiral foraminiferal shell based on Berger’s model (after Berger 1969, modified).

growth, and the volume of each new chamber
increases in constant proportion to that of the
preexisting chamber. This model produces
isometric growth with coiling in a fixed-ref-
erence frame, which is very similar to Raup’s
(1966) model and does not differ substantially
from Berger’s model. For example, Berger’s
(1969) ‘‘center of the shell’’ is replaced by the
axis that is necessary to define a three-dimen-
sional relationship. An extra parameter (Ky),
characterizes the displacement of the cham-
bers along the coiling axis of the shell.

Other authors have tried to simulate allom-
etry of foraminiferal shells. Brasier (1980) pro-
duced a morphospace model using four pa-
rameters, which correspond to Berger’s pa-
rameters, expanded by the degree of growth
extension along the coiling axis and the de-
gree of chamber compression. The latter pa-
rameter introduces allometry into the system
and mimics the changing proportions of
chambers during ontogeny of real foraminif-
era. Another important aspect of this model is
that chambers are not rotated but translated.
Although this approach was not developed

further, it did stimulate the modeling of fo-
raminifera (Brasier 1980; McGhee 1999).

Another significant contribution to fixed-
reference models was the logistic approach in-
troduced by De Renzi (1988, 1995), who sim-
ulated allometric growth of some larger plan-
ispiral foraminifera.

Moving-Reference Model

The above models rely on an abstract coor-
dinate, which is arbitrarily defined and has no
morphogenetic or physiological meaning.
Chambers (circles or spheres) are rotated and
translated along these artificial axes, which
are fixed and serve as a reference line for the
growth process. Therefore, although these
models can simulate simple planispiral, tro-
chospiral, or uniserial chamber arrangement,
they cannot simulate more complex patterns
found in foraminifera. For instance, they can-
not model gradual or abrupt changes of
growth modes that cause different chamber
arrangements during ontogeny, such as plan-
ispiral and switching to biserial or strepto-
spiral to uniserial.
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FIGURE 3. Definitions of two parameters in the model
of Webb and Swan. A, Spiral view; b is defined by the
centers of three consecutive chambers (from Webb and
Swan 1996, modified). B, Peripheral view of trochospiral
foraminifer; a refers to the fixed axis of coiling.

These constraints can be overcome by aban-
doning a fixed-reference frame in favor of a
moving-reference system. In general, the mov-
ing-reference model is based on simple prin-
ciples of motion and stepwise growth. At each
growth step, the aperture migrates to a new
position, according to locally defined rules
(Ackerly 1989). Such models have been used in
simulating ammonite growth. Okamoto
(1988) proposed a tube model for all types of
shell coiling, including heteromorph forms
with abrupt changes of coiling patterns. His
approach integrates accretional growth of the
aperture (opening of the shell) without defin-
ing any fixed coordinate system. A similar
moving-reference frame has been used in sim-
ulating radiate accretive growth of marine
sessile organisms, such as corals and sponges,
where the growth axis is associated with the
local maximum of growth (e.g., Kaandorp
1994; Hammer 1998; Kaandorp and Kuebler
2001). A comparable approach was used in
simulating plant growth (Lindenmayer 1968;
Prusinkiewicz and Lindenmayer 1990).

Signes et al. (1993: p. 72) were aware of the
moving–reference models and recognized
that the foraminiferal ‘‘axis of coiling may not
be stable and often lacks a physical represen-
tation on shells’’ and ‘‘the advantage of these
[above mentioned] local-coordinate models is
that they describe growth from an organismal
vantage point, that is from the aperture’’;
nonetheless, they concluded that ‘‘it is difficult
to estimate the orientations of apertural
planes’’ and chose ‘‘to use a fixed coiling axis
as a landmark.’’

Webb and Swan (1996) took the first step to-
wards application of the moving-reference
frame in modeling of foraminifera (see Fig. 3).
Their 3-D theoretical morphospace has three
parameters: (a) angle between coiling axis
and the line connecting centers of consecutive
chambers; (b) angle between lines connecting
centers of two consecutive pairs of consecu-
tive chambers; and (W) chamber expansion
rate. Just one of their parameters, a, is related
to the fixed coiling axis. This parameter is nec-
essary to move chambers along the fixed axis
of coiling. The parameter b refers to the line
that moves together with created chambers
(Fig. 3). This line is actually a part of the mov-

ing-reference system. The morphospace based
on this model includes a variety of forms from
planispiral through trochospiral, biserial to
uncoiled uniserial, yet it does not introduce
considerable changes into the range of mor-
phologies produced by other models, such as
that of Signes et al. (1993).

To go beyond the above models in modeling
foraminers, we need to define a moving-ref-
erence system using apertures; this is essen-
tial for locating the new growing chamber.
Analysis of different modes of chamber
growth in foraminifera suggests that the po-
sition of the aperture controls local chamber
position and its final arrangement. The prob-
lem is that although stages of chamber for-
mation are relatively well recorded, we still
know very little about how foraminiferal ap-
ertures actually form. This is in contrast to
‘‘apertures’’ created by accretionary growth of
‘‘open-end shells,’’ such as those in gastro-
pods, bivalves, ammonites, tubular foraminif-
era, etc. In those cases, a shell opening (aper-
ture) is self-defined by the growing accretive
margin of the shell (Fig. 4A,B). This open end
is therefore modeled by the so-called gener-
ating curve, which simulates formation of the
shell margin.

Such a pattern of chamber formation cannot
be applied in modeling of polythalamous fo-
raminifera because the chamber itself does not
define an aperture. Thus, it is necessary to
search for information concerning formation
of apertures in such foraminifera. Hottinger
(1978) noted that foraminifers tend to shorten
distances between the first and last compart-
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FIGURE 4. Comparison of the fixed (A, C) and moving
(B, D) reference systems in modeling of shells; z is the
axis of coiling and the x- and y-axes represent fixed-ref-
erence systems; a denotes apertures; vectors (see B, D)
depict steps of the moving-reference frames during
growth of shells. Based on Raup 1961 (A); Okamoto 1988
and Ackerley 1989 (B); Berger 1969 (C); and Topa and
Tyszka 2002 and Łabaj et al. 2003 (D).

FIGURE 5. A, Miscellanea, planispiral with the shortest
global communication path (GCP) via foramina. B, Len-
ticulina, planispiral shell with the longest GCP. Maximal
size of foraminifers: (A) 2.4 mm, (B) 0.5 mm.

ments of their shell. Brasier (1982) analyzed
the energetics of protoplasmic pathways
through the organism and concluded that for-
aminifers show a trend toward minimizing
the distance between the back of the first
chamber (proloculus) and the most proximal
aperture in the final chamber (Fig. 5B). He
standardized this cumulative distance and
called it the MinLOC—the minimum line of
communication (Fig. 1B).

Brasier’s ‘‘rule’’ seems to be valid for many
foraminiferal architectures, but not for all of
them. Lenticulina and other coiled lagenids are
curious exceptions because their foramina are
located at the outer margin of the shell (Hot-
tinger 1978), creating the longest possible
global line of communication, termed here the
‘‘global communication path’’ (GCP) (Fig. 5B).
This morphotype has a very different type of
aperture, referred to as ‘‘terminal’’ (a kind of
areal aperture in the face of a final chamber).
One could speculate that foraminifers with
such chambers and apertures are governed by
another morphogenetic rule that has priority
over the local minimization principle. The re-

sulting chambers must create chambers at the
pointed end, which by definition cannot be lo-
cated at basal parts of chambers. In this way
both local and global communication paths
(LCP and GCP) cannot be the shortest. The
conclusion is that the ‘‘growth program’’ that
controls formation of every chamber is itself
based on various ‘‘rules.’’ The optimization
(minimization) of the local distance is proba-
bly just one of the rules that directly control
chamber shapes, location of apertures, and,
ultimately, the cumulative arrangements of
chambers.

The Algorithm

The model presented in this paper does not
capture the whole complexity of morphogen-
esis in foraminifera. We have limited our
study to the 2-D case only. The shells gener-
ated by our model are composed of circular
chambers, whereas real chambers can have
many different shapes. Our model incorpo-
rates two concepts: the moving-reference sys-
tem and the minimization of local communi-
cation path (LCP). Unlike fixed-reference
models, in our model the location of aperture
is critical. Together with the reference growth
axis, the aperture constitutes the reference
system in which a new chamber is constructed.

The reference growth axis describes the cur-
rent direction of growth of the shell. Actually,
the reference growth axis has no direct mor-
phogenetic representation during formation
of a chamber. This axis resembles the fixed
‘‘axis of coiling’’ in the sense of Raup (1966) or
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FIGURE 6. Initial chamber (proloculus) with an aper-
ture defined by rW0.

FIGURE 7. Formation of a new chamber. A, Determination of the reference axis. B, Deviation from the reference
axis. C, Emplacement of the chamber (see text for details).

Signes et al. (1993). In both cases it serves as a
reference line for certain transformations. The
difference is that our growth axis is not fixed
but instead moves with the formation of suc-
cessive chambers.

The modeling of development of a forami-
niferal shell consists of discrete steps in which
successive chambers are added to the forming
shell. The location of a new chamber is calcu-
lated by displacement of its center with re-
spect to the aperture of the previous chamber.
The range and direction of this displacement
is determined by a ‘‘growth vector.’’ The
growth vector is calculated on the basis of the
reference growth axis and indicates the local
growth direction for the newly created cham-
ber.

The aperture of the new chamber is calcu-
lated according to the local minimization

principle. The distance between the apertures
of two successive chambers must be as short
as possible. The apertures cannot be enclosed
inside any other already existing chamber.
The last aperture must be connected to the
first chamber by a line of communication run-
ning through all previous apertures (Topa and
Tyszka 2002). To add a new chamber to the
shell, the algorithm performs a sequence of
geometrical transformations. Because we con-
sider only circular chambers, polar rather than
Cartesian coordinates are more convenient to
use in constructing the new chamber.

The simulation starts with the initial cham-
ber (proloculus). Its radius and the location of
the first aperture are described by an arbi-
trarily defined vector rW0 5 [r0, g0] (in polar co-
ordinates; see Fig. 6). The procedure, which
adds a new chamber to the growing form, con-
sists of two parts:

1. Positioning of the new chamber. The fol-
lowing calculations are made:
a. The radius of the new chamber, ri, is cal-

culated by using the following rule: ri 5
GFri21, (GF stands for chamber expan-
sion ratio, GF $ 1.0).

b. Next, the reference growth axis is cal-
culated. Its direction (denoted as Fi an-
gle) is determined by the center and ap-
erture of previously added chamber (see
Fig. 7A), in this case Fi 5 gi21.

c. The growth vector, v
→

i, indicates the cen-
ter of the new chamber. Its polar coor-
dinates [vi, fi] are calculated as follows:
i. Two successive chambers must over-

lap; therefore, the length of the
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FIGURE 8. Calculating the aperture location. A, Definition of vector uW i11. B, Searching for the shortest distance. C,
Relocation of the new aperture, outside the excluded range.

growth vector cannot exceed the ra-
dius of the new chamber. We use the
following formula: vi 5 TFri (TF
stands for chamber translation ratio,
0 # TF , 1.0).

ii. The direction of the vector (described
by fi angle) is calculated by deviation
with respect to the reference growth
axis by angle Df: fi 5 Fi 1 Df (Df
stands for the deviation growth vec-
tor parameter, 2180 # Df # 180; see
Fig. 7B).

2. Finding a new aperture:
a. Vector rWi 5 [ri, gi] points to the location

of the new aperture. We already know ri

from 1a (see above). To find gi, we define
vector uW i 5 vW i 1 rWi (see Fig. 8A). It con-
nects two successive apertures and rep-
resents a Local Communication Path
(LCP). We are looking for such a gi, value
for which the length of the vector uW i is
the shortest. The shortest distance from
a point located inside the circle to the
circle border lies along a line passing
through this point and the center of the
circle. The direction of this line is de-
scribed by the previously calculated f
angle (see 1cii above). Thus we examine
two values, gi

0 5 fi 1 p and gi
1 5 fi 1

p (see Fig. 8B), and select the value for
whichever distance is shorter.

b. The new aperture cannot be located in-
side any previously created chamber.
For each previously created chamber we
check whether it overlaps the new cham-
ber and if so we calculate the range of gi

values for which the new aperture could
be placed inside this chamber (see sup-

plementary materials online at http://
dx.doi.org/10.1666/04062.S1 for details).
The individually calculated ranges are
combined into one global excluded
range of gi. If necessary the new aper-
ture is relocated to one of the boundary
points of the excluded range (see Fig.
8C). The boundary point for which the
length of uW i is the shortest is finally taken
as the new aperture. If there are two
such points, either can be chosen.

Figure 9 presents a few successive steps of
the simulation.

Parameters. The development of the shell in
2-D is controlled by three parameters:

GF—the chamber expansion ratio. In our
model GF is equal to the ratio between the
radius of two successive chambers: GF 5
ri/ri21; GF $ 1.0—a new chamber is not
smaller than its predecessor.

TF—chamber translation ratio (overlap) is
equal to the ratio of the length of the growth
vector to the radius of the chamber: TF 5
vi/ri; 0 # TF , 1.0 It cannot exceed 1.0, oth-
erwise a new chamber will be detached
from the shell.

Df—deviation of the growth vector from the
reference growth axis, 2180 # Df # 180
(see Fig. 7B). Negative and positive values
of Df mean that the growth vector is devi-
ated in clockwise or anticlockwise direction
respectively.

These parameters can be used in the model
in two different ways:

1. parameters are constant at each step of sim-
ulation;
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FIGURE 9. Successive steps in the creation of a biserial foraminiferal shell. Dotted line represents current reference
growth axis. Successive apertures were connected to the communication path.

FIGURE 10. Foraminiferal shell generated by using the
presented model. A, The shell with global communica-
tion path (GCP) and latest reference growth axis
marked. B, Cleared image to mimic cross-sections of
real foraminifera. Not to scale.

2. parameters are generated at random at
each step of simulation.

The combinations of both approaches (e.g.,
one parameter is constant, the rest are gener-
ated at random) are also considered.

The first approach assumes that the set of
parameters (GF, TF, and Df) is established at
the start and the same values are applied at
each step of the simulation. This method mim-
ics to some extent the influence of a genetic
code on generated foraminiferal shells. The
same set of parameter values produces an
identical shell form.

In the second approach, we define the rang-
es of fluctuations of the parameters instead of
exact values. At each step of the simulation a
new set of parameters (in this case denomi-
nated as GFi, TFi, and Dfi) is generated at ran-
dom (from the specified ranges) and applied
to the algorithm. Distribution of the probabil-
ities in these ranges is monotonic. This meth-
od assumes that environmental factors can in-
fluence the growing form during the ontogeny
and randomly deform the shell.

Results

The model was implemented in C11 lan-
guage using the OpenGL/GLUT graphics li-
braries (Stroustrup 1997; Woo et al. 1997). This
approach enables easy porting of the model to
different platforms, which support these li-
braries. All the simulated foraminiferal shells
shown in Figures 10–14 were generated by
this program. Each presented form is supple-
mented by a set of parameters, which was ap-
plied to the program in order to model this
form.

Figure 10A depicts basic terms used in de-
scribing simulated foraminiferal shells, in-
cluding accessory points and lines, such as ap-
ertures, GCP and the latest reference growth
axis for a new chamber. Figure 10B presents
the same form with the skeletal pattern only.
Apertures (including foramina) are represent-
ed by white gaps within black shell elements.
This pattern resembles cross-sections of real
foraminifers (Fig. 1)

Figure 11 shows the forms generated mostly
with random parameters (Table 1). The first
two uniserial forms are partly defined by non-
random parameters to show an ideal rectilin-
ear growth pattern (Dfi is fixed at 1808). A
wide range of this parameter, 1448 # Dfi #
2168, creates random changes of growth direc-
tion (Fig. 11C). The last fully uniserial form
(Fig. 11D) is constructed with a relatively nar-
row range of Dfi (174.68 # Dfi # 177.38),
which is slightly asymmetric to all local ref-
erence axes. The resulting form is gently
curved (Fig. 11D).

Spiral morphotypes show an incredible va-
riety of shapes. Nonetheless, general growth
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FIGURE 11. Variability of simulated foraminiferal shells. A–D, Uniserial morphotypes. E–G, Different spiral forms.
H, Coiled to uncoiling uniserial form. I,J, Biserial forms. K, Biserial-spiral form. L–N, Mixed chaotic forms switching
from biserial to spiral patterns. Random (A–N) and nonrandom (TF and Df only in A, B) parameters of simulations
are shown in Table 1.

TABLE 1. Parameters of simulated shells from Figure 11.

Fig. 11 GF TF Df [8]

A ^1.05, 1.25& 0.1 180.0
B ^1.4, 1.8& ^0.01, 0.1& 180.0
C ^0.96, 1.15& ^0.03, 0.08& ^144.0, 216.0&
D ^1.0, 1.11& ^0.01, 0.05& ^174.6, 177.3&
E ^1.4, 1.5& ^0.3, 0.4& ^126.0, 153.0&
F ^1.05, 1.18& ^0.65, 0.75& ^129.6, 142.2&
G ^0.95, 1.15& ^0.13, 0.18& ^84.6, 106.2&
H ^1.15, 1.25& ^0.1, 0.2& ^120.6, 189.0&
I ^1.15, 1.25& ^0.25, 0.35& ^218.0, 18.0&
J ^1.01, 1.05& ^0.03, 0.28& ^227.0, 27.0&
K ^1.01, 1.05& ^0.63, 0.68& ^30.6, 41.4&
L ^1.05, 1.1& ^0.35, 0.45& ^18.0, 54.0&
M ^1.01, 1.09& ^0.33, 0.48& ^34.2, 63.0&
N ^1.01, 1.09& ^0.23, 0.28& ^34.2, 63.0&

patterns are very stable, even with relatively
wide ranges of parameters (Fig. 11E–G).
Chamber overlaps and global proportions of
shells depend on different configurations of
expansion ratios (GFi) and translation ratios
(TFi). The main difference is the localization of
apertures. Most of the forms reveal basal ap-
ertures, which are located at the base of cre-
ated chambers (Fig. 11F,G). Areal apertures
(enclosed by the same chamber, as opposed to
a basal one) also occur and tend to character-
ize uncoiling morphotypes (Fig. 11E,H). Form
H gives an example of such a shell with quite

a drastic changeover from coiled pattern to
uncoiled, rectilinear growth. The existence of
two such different aperture types is typical for
real foraminifers.

Biserial morphotypes are represented by
elongated shells, mostly a function of the
chamber expansion rate (GFi) (Fig. 11I,J). High
GFi results in quickly expanding chambers
and diverging peripheries (margins) of the
shell Fig. 11I). Low GFi creates long and slen-
der forms with nearly parallel peripheries
(Fig. 11J). Another biserial morphotype with a
coiled pattern is produced by relatively nar-
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FIGURE 12. Fragment of foraminiferal shell morphospace generated by using nonrandom parameters. The chamber
expansion rate and the chamber translation are fixed at constant values: GF 5 1.1, TF 5 0.4. The deviation angle of
the growth vector Df is changing from 1.88 to 1808.

row ranges of all parameters and resembles
simple spiral morphotypes with two series of
chambers (Fig. 11K). It is worth noting that all
of the above morphotypes (A–K) resemble 2-
D cross-sections of real foraminifers.

The last three morphotypes show strongly
unpredictable growth patterns, switching
from biserial to spiral (Fig. 11L–N). They are
defined by relatively wide ranges of the de-
viation angles Dfi. These chaotic forms are
rare in nature, but some of them mimic ab-
normal shells usually related to environmen-
tal stress (Fig. 11L,M). Others may be similar
to real attached (adherent) foraminifera, as
well as some irregular (in 3-D) agglutinated
foraminifera (Fig. 11N).

Although detailed morphospace analysis is
beyond the scope of this paper, it is reasonable
to test how the model reacts to changing pa-
rameters. To understand general behavior in
morphospace, it is best to focus on a deter-
ministic model based on nonrandom param-
eters. It seems clear that simulated shell mor-
phology is very sensitive to changes of the de-

viation angle Dfi parameter. Therefore, dis-
crete steps of Dfi from 08 to 1808 were chosen
to test the response of morphotypes to differ-
ent values of this parameter. Two other two
parameters are set constant (i.e., GFi 5 1.1; TFi

5 0.4) for all simulated forms and for all time
steps. The resulting variability of shell pat-
terns reveals four areas (phases) of character-
istic morphologies (Fig. 12):

• biserial forms (Dfi varies from 08 to 38.8448),
• mixed forms (Dfi from 38.8628 to 54.3248),
• trochospiral forms (Dfi from 54.3428 to

158.8148),
• uniserial forms (Dfi from 158.8328 to 180.08).

These four areas are separated by three
phase transitions (the term introduced in the
context of morphospaces by M. Paszkowski
(personal communication 2003): (i) from bi-
serial to mixed forms; (ii) from mixed to tro-
chospiral forms; and (iii) from trochospiral to
uniserial forms. The first two (i and ii) tran-
sitions are abrupt because the morphology
rapidly changes its patterns. The last transi-
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FIGURE 13. Simulations of spiral to uncoiling (A–E) and purely uniserial (F, G) foraminiferal morphotypes with
random parameters (A–F) compared with the nonrandom (G); (A–F) 1.15 # GF # 1.25 and 0.1 # TF # 0.2; (A) 908
# Df # 2168; (B) 908 # Df # 1988; (C) 908 # Df # 1808; (D–F) 1088 # Df # 2168; (G) GF 5 1.2; TF 5 0.15; Df 5
90.08.

FIGURE 14. Foraminiferal shells generated with random
(A, B) and nonrandom parameters with constant values
of GF 5 1.1 and TF 5 0.4. A, Spiral form (first five cham-
bers) changing to biserial (last six chambers). B, The
same form with additional chamber breaking the bi-
serial growth pattern (deviation angle Df varies from
37.088 to 42.488). C, Alternating spiral and biserial form
with the constant deviation angle Df 5 39.788.

tion (iii) is gradual from strictly trochospiral,
through to coiled uniserial forms, to uniserial
forms. It is important to note that shells with
Dfi . 1178 for all i reveal a tendency towards
development of an areal aperture, in contrast
to the basal aperture generated at smaller Di

values.
In general, such a set of morphotypes can be

treated as a traverse through the three-dimen-
sional morphospace of all possible morphol-
ogies. However, this traverse does not include
forms that are initially spiral and switch dur-
ing ontogeny to the stable biserial mode of
growth. Furthermore, initially spiral forms
switching to uniserial are also missing. On the
other hand, they can be simulated by using
random parameters (Figs 13, 14).

Figure 13A–E presents examples of such
spiral morphotypes changing to uniserial pat-
tern with very wide ranges of the Dfi angle.

The model simulates such morphologies, nev-
ertheless, they are completely random and
nonrecurring. A similar set of stochastic pa-
rameters also creates uniserial forms (Fig.
13F). By comparison, Figure 13G shows the
simulated uniserial arched shell defined by
averaged nonrandom parameters.

Figure 14A depicts a form that is initially
spiral, then switching to a biserial growth pat-
tern. Such forms can only be modeled with
random deviation angles ranging around
37.88–42.488. This biserial mode of growth is
broken after the addition of the twelfth cham-
ber (Fig. 14B). The averaged value of Dfi de-
fines a nonrandom morphotype with mixed
spiral and biserial growth patterns (Fig. 14C).
This form comes from the same area of the
morphospace where mixed morphologies are
created (Fig. 12).

Discussion and Future Prospects

A comparison of our moving-reference
model with selected fixed models and their
parameters is presented in Table 2. An over-
view of simulated forms based on the moving-
reference model indicates that its theoretical
morphospace strongly overlaps those devel-
oped by fixed-reference models. Elimination
of the fixed references reveals a much wider
variety of chamber arrangements, which are
especially well expressed in simulations of
gradual and abrupt ontogenetic changes in
chamber arrangements. Such changes also
characterize morphotypes of some real fora-
miniferal shells.

It was arbitrarily decided that the model
would select just a single aperture per cham-
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TABLE 2. Tentative relationships between reference systems and the parameters of discussed models of forami-
niferal shell growth. The parameters are defined either in the fixed-coordinate system (*) or in the moving-reference
system (**).

Berger 1969 Signes et al. 1993 This model

Reference system Fixed-coordinate sys-
tem*

Fixed cylindrical
coordinates
system*

Moving-reference system**

Apertures None None Calculated as a result of LCP minimiza-
tion

Size of chambers ‘‘q-ratio’’ between suc-
cessive chamber radii

Kt parameter
(chamber vs.
shell volume
ratio)

GF-chamber expansion ratio between
successive chamber radii

Angle between succes-
sive chambers (cen-
ters)

’a-angle’ of advance f None

Local growth angle** None None Df-angle of deviation from the refer-
ence growth axis**

Amount of chamber
overlap

‘‘o-lap’’-amount of
overlap

None TF-chamber translation ratio

Distance from the axis* None D* None
Translation along the

coiling axis (in 3-D)*
None Ky parameter None

Selection of parameters Nonrandom Nonrandom Random or nonrandom

ber. This is the case for most small foramini-
fers. Multiple apertures were not taken into
account at this stage to keep the model as sim-
ple as possible. Including such apertural var-
iability will be essential in future attempts to
simulate complex foraminiferal shells.

In order to avoid ‘‘forbidden morphospace
regions’’ sensu Berger (1969), i.e., detachment
of chambers, the translation ratio parameter
(length of the growth vector) is defined in
such a way that it cannot be longer than the
radius of a new chamber. Foraminifers with
chambers that do not touch one another can-
not exist as integral individuals. Future stud-
ies should focus on the mapping out of geo-
metric constraint boundaries, the parameter
coordinates that represent possible versus im-
possible geometries (G. McGhee written com-
munication 2004). We believe this is an essen-
tial analytic technique of theoretical morphol-
ogy (see Berger 1969; McGhee 1999).

Our model is not able to simulate forms,
such as Lenticulina, with a maximal global
communication path (Fig. 5B). This is due to
the assumptions that chambers are isometric
with constant circular shapes and that the po-
sition of an aperture does not shape the cham-
ber. On the other hand, our empirical obser-
vations have shown that apertures often have

a strong impact on the shape of a chamber;
e.g., chambers tend to show specific apertural
structures, such as necks (tubiform extensions
of ultimate chambers), radial structures (e.g.,
in Lenticulina), depressions around apertures,
etc. Future studies ought to include this aspect
into the theoretical morphology of foraminif-
era.

The reference growth axis used in our mod-
el has a vague morphogenetic representation
during the formation of a chamber (see Figs.
7, 9, 10). This growth axis is defined by the
center of the last chamber and the final aper-
ture. It moves with the formation of successive
chambers. It should be noted that this line de-
scribes growth from an essential morphoge-
netic point, i.e., from the aperture. Another
option would be to define the reference
growth line as connecting the last two adja-
cent apertures. Its physical representation
would be clear because it would follow the lo-
cal communication path (LCP). An important
analog of our hypothetical reference growth
axis can be found in large complex foraminif-
era, which often show intercameral foramina
situated along straight lines, facilitating the
protoplasmic streaming between chambers or
chamberlets (see Hohenegger 1999; Hottinger
2000). This means that when a new chamber
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is formed, its new aperture or apertures tend
to follow the same foraminal line (created by
the former apertures). The protoplasmic
streaming may also play a role in small fora-
minifera. Coiled forms with uncoiled final
stages, as well as fully uniserial morphotypes,
show a tendency to stabilize their uniserial
pattern as soon as they reach it. Therefore, our
reference growth axis may have a true mor-
phogenetic meaning; i.e., the protoplasmic
streaming and/or cytoskeletal structures may
force a new aperture to locate vis-à-vis the for-
mer opening. Empirical examples should be
used to investigate this point further and the
results should be incorporated into the model.

The previous models used a nonrandom se-
lection of parameters, which were kept con-
stant throughout the ontogenesis. Our first
method also applies this approach in order to
test the response of the model to fixed param-
eters. Simulations with such parameters re-
veal very regular patterns with gradually
changing forms of chambers (Fig. 11G,H).
However, this does not match reality because
foraminiferal shells never show ideal cham-
bers that follow strict geometric rules. Some
chambers are larger or smaller than average;
others are more or less twisted from general
growth directions or overlapped in different
manners. Extremely regular forms are unre-
alistic in nature but may resemble individuals
of certain species developed under very stable
environmental conditions. Therefore, this
fixed-parameter approach represents the end-
member of the continuum covering the whole
spectrum of susceptibility of chambers to flex-
ible ontogenetic variability.

Our second approach incorporates this on-
togenetic variability into the model. In this
stochastic approach, selected parameters are
allowed to fluctuate within given ranges.
These ranges correspond to the physiological
response of the cell to different environmental
conditions during the formation of chambers.
Therefore, variability of chambers within the
same individual defined by the specific ge-
notype is limited by intrinsic morphogenetic
constraints. These constraints are indirectly
defined by the genotype itself through com-
plex self-organization of coded molecular pro-
cesses. Actually, the best term for such varia-

tions is a ‘‘reaction norm,’’ which is the set of
phenotypes produced by a single genotype
across a range of environmental conditions
(Stearns 1992).

Our simulations mimic real morphogenetic
processes, which are always strongly affected
by external factors, such as nutrition availabil-
ity, temperature, salinity, and pH level. Some
foraminiferal species show very stable shell
morphologies, others change strongly within
a certain range. For instance, adherent (at-
tached) foraminifers sometimes have an irreg-
ular morphology, which seems to have strong
functional value controlled by a substrate,
competition for space, and food availability.
These irregularities, directly controlled by en-
vironmental factors, must be tolerated by ge-
netic control.

An instructive example refers to fluctua-
tions of chamber volumes, which are most
likely to be related to food availability during
different phases of ontogeny. Larger cham-
bers are probably formed during high food
availability; relatively smaller chambers may
be linked to periods with distinctly lower ac-
cess to nutrition (see Rhumbler 1909; Hol-
bourn et al. 2001; Tyszka 2004).

In conclusion, modeling the influence of ex-
ternal factors on morphogenesis of foramini-
fers based on simple randomization of param-
eters. This stochastic approach, introducing
random fluctuations of parameters within a
given range, mimics reality much better than
fixed parameters. This approach should be
further investigated, even if morphogenesis of
foraminiferal shells seems to be strongly ge-
netically controlled, in contrast to an accretive
growth of marine sessile organisms, such as
corals, sponges, coralline algae, which often
grow under strong and continuous influence
of the environment (e.g., Kaandorp 1994;
Kaandorp and Kuebler 2001).

Comparison of simulated morphotypes
with real foraminiferal shells indicates that
the model with nonrandom parameters (de-
terministic) is not able to simulate some im-
portant morphotypes, e.g., the forms that are
initially spiral but finish either with biserial or
uniserial patterns. Such forms are modeled
only with random parameters (Figs. 13, 14).
Real foraminifers do reveal such recurrent
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and relatively stable morphologies, which
seem to be indirectly controlled by their ‘‘ge-
netic programs.’’ If such stable, repeatable
morphologies are missing in the nonrandom
model, then the model should be further ver-
ified and/or extended by using additional
rules or parameters. In the future, we would
like to focus on the definition of Df and intro-
duce certain additional rules controlling
placement of apertures. Although the local
minimization principle appears to be one of
the basic rules, it is very likely that other rules
take part in the morphogenetic processes of
shell formation.

The model presented herein is size-inde-
pendent, which may be considered as a limi-
tation. We are aware that real foraminifera are
size-dependent, as has been suggested by sev-
eral authors (e.g., Brummer et al. 1986; Hem-
leben et al. 1989; Signes et al. 1993; Tyszka
2004). Size-dependency was analyzed and ex-
tensively discussed by Signes et al. (1993).
This approach, including isometry or allome-
try of chambers and shells, will be incorpo-
rated and extended in further studies. Our
present focus is on development and optimi-
zation of the model before application of ad-
ditional relationships.

Spherical shapes of simulated chambers do
not reflect the tremendous variability of cham-
ber shapes in nature. Furthermore, foraminif-
eral growth is often strongly allometric, and in
many foraminifers the shape of the chamber
changes during ontogeny. All these ontoge-
netic changes influence the overall form of the
whole specimen, which directly depends on
cumulative succession of chambers. It is clear
that we have to test other methods (under
study) to incorporate chamber shape into the
model. A first approximation could be an in-
troduction of implicit surfaces (blobs, meta-
balls) (Opalach and Gascuel 1995) to model
chambers with irregular shapes. The best
method would be to model intrinsic morpho-
genetic processes, which directly control the
shape and size of chambers, including the lo-
calization of apertures. These processes are
just roughly understood and should be ad-
dressed in future investigations.

All former and recent models of foraminif-
eral theoretical morphology are purely geo-

metric in nature. Although the most recent
model introduces apertures as local and mov-
ing reference points, it still uses artificial pa-
rameters, such as angles and ratios. Another
model based on simulation of real processes is
necessary. Such a model should still act local-
ly; thus, apertures should represent local ref-
erence centers for the formation of successive
chambers. The model should further intro-
duce intracellular dynamics during the for-
mation of chambers, including, among others,
cytoskeletal dynamics with the formation of
microtubular networks, internal signaling,
formation of primary organic membrane, ‘‘An-
lage,’’ processes of the test secretion, forma-
tion of aperture/s, pores, external structures,
and secondary laminae. The model should
mimic biochemical reactions and biophysical
processes rather than geometric transforma-
tions. Theoretical foraminiferal morphogene-
sis may then emerge spontaneously from sim-
ple rules and parameters, instead of being
predefined in the form of geometric figures
and their transformations. Constructing such
an emergent model is a challenging prospect
for the future (see Tyszka et al. 2005).

Conclusions

Previous models of foraminiferal shells
(e.g., Berger 1969; Signes et al. 1993) referred
to fixed axes and neglected apertures (see
Figs. 2, 3). Our simple 2-D model applies a
moving-reference system, an idea that comes
from simulations of heteromorphic shells of
ammonites (Okamoto 1988; Ackerly 1989).
This system is based on introducing apertures
as reference points, which in reality and in our
model are responsible for emplacement of ev-
ery new chamber (Figs. 1, 6–9). A minimiza-
tion paradigm of the local communication
path (LCP) helps to define an aperture in ev-
ery newly added chamber. The LCP rule de-
rived from previous studies (Hottinger 1978;
Brasier 1982) suggests global shortening of the
distance between the first and the last cham-
ber via internal foramina and an external ap-
erture. This rule is based on local optimization
during formation of a new chamber. Even if it
does not explain all cases (Fig. 5B), it is a close
approximation of actual morphogenetic rela-
tionships during the stepwise growth of fo-
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raminiferal shells. The model also introduces
three parameters, i.e., chamber expansion rate,
chamber translation ratio (overlap), and de-
viation angle. This model tries to use real mor-
phologic characters and to follow basic biolog-
ical processes, which usually act step-by-step.
In order to imitate reality, some elements of
randomness, another novelty in foraminiferal
modeling, are applied in selection of param-
eters. This approach seems to be very prom-
ising for future studies. It mimics random ge-
netic variability (mutations) and the influence
of external (environmental) factors. Compar-
ison of the moving-reference model presented
herein with selected fixed models is shown in
Table 2.

Simulated foraminiferal shells based on the
moving-reference model indicate that their va-
riety is much wider than for morphotypes de-
veloped by fixed-reference models. The mov-
ing-reference model is especially well suited
for simulating gradual and abrupt changes in
growth patterns as features characteristic of
real foraminiferal shells (Figs. 1, 11–14).

We are aware of numerous oversimplifica-
tions in the model. Some of them can be over-
come by further updating this model. To move
further toward reality, the model should be
verified and extended by applying additional
rules as well as parameters. Two-dimensional
simulations have only limited value, because
foraminifera grow in three dimensions and
some of the growth patterns cannot be re-
duced to two dimensions (see Łabaj et al.
2003). Furthermore, we want to test other
methods to incorporate variability of chamber
shapes into the model. Ideally we would like
to construct an emergent model that simulates
intrinsic morphogenetic processes and emerg-
ing shell patterns (see Tyszka et al. 2005).
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