Laboratory

Stable Isotope Laboratory focuses on the analysis of stable and radioactive isotopes of selected elements. We are specialized in the analysis of stable carbon, oxygen, nitrogen, hydrogen and sulfur isotopic composition of both organic and inorganic geological samples. We have experience in isotopic examinations of water. We perform isotopic measurements of oxygen and hydrogen in groundwater and surface water, C in carbonates dissolved in water (DIC), as well as radioactive tritium also in samples having low activity. We measure activity of alpha- radioactive isotopes of polonium, uranium and thorium in geological samples. In addition, we measure gamma radiation in natural as well as in industrial samples.

We also carry out analyses of carbon, hydrogen, nitrogen and sulfur concentrations in solid samples.

 

Our data are used in palaeoecological, palaeoclimatic and hydrogeological studies. We cooperate with scientists from many disciplines: botanists, ecologists and anthropologists. We collaborate with many research institutions and laboratories which stimulates the progress of our analytical capabilities.

Equipment

  • IRMS Finnigan Delta Plus

  • Kiel IV Carbonate Device

connected to IRMS DELTA plus, Thermo Scientific.

Standard analysis: 
δ13C and δ18O determination in mono-carbonate samples. 
Method PDF >>

  

  • IRMS Thermo Delta V Advantage
  •  Flash EA 1112 HT

with autosampler and NO BLANK system connected to IRMS DELTA V Advantage, Thermo Scientific.

Standard analysis: 
δ13C and δ15N determination in organic and inorganic solid samples 
δ18O determination in BaSOand Ag3PO4 
δ34S determination in BaSO4 and Ag2
Method PDF >>

  

  • IRMS Thermo MAT 253
  • GasBench II

with autosampler Combi PAL connected to IRMS MAT 253, Thermo Scientific.

Standard analysis: 
δ13C determination of inorganic carbon in water (DIC)
δ18O determination in water
Determination of δ13C and δ18O in mono-carbonate samples. 
Method PDF >>

  

  • GC IsoLink + Trace GC ultra

with IsoLink GC Thermo Scientific connected to IRMS MAT 253, Thermo Scientific.

Standard analysis:
Stable isotopic composition of N, C , O and H in all compounds separated by columns:
Rt Q Bond length 30 m diamater 0,32 mm, Film 10 µm; 
DB 5 lenght 30 m diameter 0,25 mm, Film 0,25 µm;
ZB 5 MS lenght 60 m diameter 0,25 mm, Film 0,25 µm

  • HDevice with autosampler Combi PAL

connected to IRMS MAT 253, Thermo Scientific. 

Standard analysis:
δ2H determination in water 
Method PDF >>

  

Staff and contact

Stable Isotope Laboratory
Institute of Geological Sciences PAS

Warsaw Research Centre
Twarda 51/55, 00-818 Warsaw, Poland

phone (48) 22 6978-714
e-mail: b.gebus@twarda.pan.pl

Scientific coordinator

D.Sc. Maciej T. Krajcarz, PhD
phone: (48) 22 6978-989
e-mail: mkrajcarz@twarda.pan.pl

Manager

Ph.D. Beata Gebus‑Czupyt
phone: (48) 22 6978-714
e-mail: b.gebus@twarda.pan.pl

Staff:

Ph.D. Adam Porowski
phone: (48) 22 6978-756
e-mail: adamp@twarda.pan.pl

M.Sc. Magdalena Radzikowska
phone: (48) 22 6978-728
e-mail: radzikowska@twarda.pan.pl

M.Sc. Greta Brancaleoni
phone: (48) 22 6978-723
e-mail: greta.brancaleoni@twarda.pan.pl

M.Sc. Bartosz Wach
phone: (48) 22 6978-786
e-mail: b.wach@twarda.pan.pl

Ph.D. Paweł Zawidzki
phone: (48) 22 6978-711
e-mail: pzawidzk@twarda.pan.pl

Publications

The results of analyses carried out in the Stable Isotope Laboratory were used e. g. in the following publications:

2014

  • Łanczont M. Madeyska T., Komar M., Bogucki A. 2014. The environments of loess uplands to the north and east of the Carpathians during the penultimate interglacial (MOIS 7) in palaeopedological and palaeobotanical records. European Journal of Soil Science. Special Issue Soils and paleosols as archives of natural and anthropogenic environmental changes. 
  • Łanczont M., Madeyska T., Bogucki A., Sytnyk O., Kusiak J., Frankowski Z., Komar M., Nawrocki J., Żogała B. 2014. Stratigraphic position and natural environment of the oldest Middle Palaeolithic in the central Podolia, Ukraine: New data from the Velykyi Glybochok site. Quaternary International 
  • Krajcarz M.T., Krajcarz M. 2014. The 200 000 year long record of stable isotopes (δ18O, δ13C) of cave bear (Ursus spelaeus) teeth from one site - Biśnik Cave, Poland. Quaternary International. 339-340: 119-130. (DOI: 10.1016/j.quaint.2013.07.022) 
  • Krajcarz M.T., Krajcarz M., Marciszak A. 2014. Palaeoecology of bears from the Middle Pleistocene deposits of Biśnik Cave based on stable isotopes (δ13C, δ18O) and dental cementum analyses.Quaternary International 326-327: 114-124. (DOI: 10.1016/j.quaint.2013.10.067) 
  • Krajcarz M.T, Krajcarz M. 2014. Summers and winters at Wilczyce. Seasonal changes of Paleolithic settlement and environment on the basis of seasonality and isotope analyses of animal teeth. In: Schild R. (Ed.), Wilczyce. A late Magdalenian winter hunting camp in southern Poland. Institute of Archaeology and Ethnography PAS, Warszawa, pp.: 137-148 (in press). 
  • Piskorska T., Stefaniak K., Krajcarz M., Krajcarz M.T. 2014. Reindeer during the Upper Palaeolithic in Poland: Aspects of variability and paleoecology. Quaternary International (DOI:10.1016/j.quaint.2014.08.027). 
  • Porowski A., 2014. Isotope Hydrogeology (book chapter). In: Eslamian S. (ed.) Handbook of Engineering Hydrology. vol. I: Fundamentals and Applications. Taylor & Francis Group, USA: 345-378 
  • Porowski A., 2014. Chemical and Isotopic Characteristics of Thermal Waters in the Carpathian Region, South Poland: Implication to the Origin and resources. (book chapter). In: Balderer W., Porowski A., Hussein I., Lamoreaux J. (eds), Thermal and Mineral Waters: Origin, Properties and Applications. Environmental Earth Sciences Book Series, Springer, USA: 73-89 
  • Sienkiewicz E. & Gąsiorowski M. 2014. Changes in the trophic status of three mountain lakes - natural or anthropogenic process? Polish Journal of Environmental Studies 23: 875-892. 
  • Środoń J., Szulc J., Anczkiewicz A., Jewuła K., Banaś M., & Marynowski L. 2014. Weathering, sedimentary and diagenetic controls of mineral and geochemical characteristics of the vertebrate-bearing Silesian Keuper. Clay Minerals, 49: 569-594. 


2013

 

  • Gąsiorowski M. & Sienkiewicz E. 2013. The sources of carbon and nitrogen in mountain lakes and the role of human activity in their modification determined by tracking stable isotope composition. Water, Air and Soil Pollution 224: 1498.
  • Kołaczek P., Mirosław-Grabowska J., Karpińska-Kołaczek M., Stachowicz-Rybka R., 2014. Regional and local changes inferred from lacustrine organic matter deposited between the Late Glacial and mid-Holocene in the Skaliska Basin (north-eastern Poland). Quaternary International, DOI: 10.1016/j.quaint.2014.04.024 
  • Krajewski, K. P., 2013. Organic matter-apatite-pyrite relationships in the Botneheia Formation (Middle Triassic) of eastern Svalbard: Relevance to the formation of petroleum source rocks in the NW Barents Sea shelf. Marine and Petroleum Geology, 45: 69-105. 
  • Łanczont M., Madeyska T., Mroczek P., Hołub B., Komar M., Kusiak J., Łącka B., Żogała B., Bogucki A. 2013. Age and palaeoenvironmental history of loess cover in the area of the Kraków-Spadzista Street archeological site (Southern Poland).In: Abstracts and Guide Book of International Conference World of Gravettian Hunters, Kraków, 25-28 czerwca 2013, 119-137. ISBN 978-83-61358-52-7 
  • Mirosław-Grabowska J., Zawisza E., 2013. Late Glacial-early Holocene environmental changes in Charzykowskie Lake (northern Poland) based on oxygen and carbon isotopes and Cladocera data.Quaternary International, Volumes 328-329: 156-166 
  • Porowski A., 2013. Origin of the groundwaters of the Carpathian flysch in the light of hydrogeochemical investigations. In: Górecki W., Hajto M. (eds), Geothermal Atlas of the Eastern Carpathians. MNISW & AGH Project, GOLDRUK, Poland: 2012-2014 
  • Porowski A., 2013. Sposób odsalania wysoko zmineralizowanych roztworów wodnych do oznaczania stosunków izotopowych 18O/16O i 2H/1H w wodach podziemnych. Patent pending P.403735 


2012

 

  • Balderer W., Porowski A., Idris H., LaMoreau J.W., (eds), 2012. Thermal and Mineral Waters: Origin, Properties and Applications (Environmental Earth Sciences), Springer, 250p. 
  • Gradziński M., Duliński M., Hercman H., Górny A., Przybyszowski S., 2012. Peculiar calcite speleothems filling fissures in calcareous sandstones and their palaeohydrological and palaeoclimatic significance: an example from the Polish Carpathians, Geological Quarterly, 56 (4) 2012: 711-732. 
  • Porowski A., 2012. Chemical and isotopic characteristics of thermal waters in the Carpathian Region, South Poland: implication to the origin and resources. In: Werner Balderer, Adam Porowski, Hussein Idris and James W. LaMoreaux (eds.) "Thermal and Mineral Waters: Origin, Properties and Applications". Environmental Earth Sciences, Springer (2013). 
  • Zalewski M., Dudek D., Godeau J.-F., Maruszkiewicz M., 2012. Stable isotopic research on ground beetles. Review of methods. Baltic Journal of Coleopterology, 12(1): 91 - 98. 


2011

 

  • Krajewski, K. P., 2011. Phosphatic microbialites in the Triassic phosphogenic facies of Svalbard. In: V.C.Tewari & J. Seckbach (eds.): Stromatolites: Interaction of Microbes with Sediments. Cellular Origin, Life in Extreme Habitats and Astrobiology, 18: 187-222. Springer. 
  • Wierzbowski, H., Rogov, M., 2011. Reconstructing the palaeoenvironment of the Middle Russian Sea during the Middle-Late Jurassic transition using stable isotope ratios of cephalopod shells and variations in faunal assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology, 299: 250-264. 


2010

 

  • Gąsiorowski M., Sienkiewicz E., 2010. The Little Ice Age recorded in sediments of a small dystrophic mountain lake in southern Poland. Journal of Paleolimnology, 43: 475-487. 
  • Gąsiorowski M., Sienkiewicz E., 2010. 20th century acidification and warming as recorded in two alpine lakes in the Tatra Mountains (South Poland, Europe). Sciences of Total Environment, 408: 1091-1101.
  • Hercman H., Gąsiorowski M., Gradziński M., Kicińska D., 2010. The first dating of cave ice from the Tatra Mountains, Poland and its implication to palaeoclimate reconstructions. Geochronometria, 36: 31-38. 
  • Krajewski, K. P., Gonzhurov N.A., Laiba A.A., Tatur A., 2010. Early diagenetic siderite in the Panorama Point Beds (Radok Conglomerate, Early to Middle Permian), Prince Charles Mountains, East Antarctica. Polish Polar Research, 31: 168-194. 
  • Mirosław-Grabowska, J., Gąsiorowski, M., 2010. Changes of water level in the Eemian palaeolake at Imbramowice (SW Poland) based on isotopic and cladoceran data. Quaternary Research, 73: 143-150. 


2009

 

  • Boguckyj A.B., Łanczont M., Łącka B., Madeyska T., Sytnyk O., 2009. Age and the palaeoenvironment of the West Ukrainian Palaeolithic: the case of Velykyi Glybochok multi-cultural site.Journal of Archaeological Science, 36: 1376-1389. 
  • Krajewski K.P., Woźny E., 2009. Origin of dolomite-ankerite cement in the Bravaisberget Formation (Middle Triassic) in Spitsbergen, Svalbard. Polish Polar Research, 30: 231-248. 
  • Łącka B., Łanczont M., Madeyska T., 2009. Oxygen and carbon stable isotope composition of authigenic carbonates in loess sequences at the Carpathian margin and Podolia, as palaeoclimatic record. Quaternary International, 198: 136-151. 
  • Mirosław-Grabowska J., 2009 Evolution of palaeolake environment in Poland during the Eemian Interglacial based on oxygen and carbon isotope data from lacustrine carbonates. Quaternary International, 207: 145-156. 
  • Mirosław-Grabowska J., Niska M., Sienkiewicz E., 2009. Evolution of the palaeolake at Ruszkówek (central Poland) during the Eemian Interglacial based on isotopic, cladoceran and diatom data. Journal of Paleolimnology, 42: 467-481. 
  • Porowski A., Dowgiałło J., 2009. Application of selected geothermometers to exploration of lowenthalpy thermal water: the Sudetic Geothermal region in Poland. Environmental Geology, 58: 1629-1638. 


2008

 

  • Gąsiorowski M., 2008. Deposition rate of lake sediments under different alternative stable states.Geochronometria, 32: 29-35. 
  • Hercman H., Gradziński M., Bella P., 2008. Evolution of Brestovska Cave Based on U-series Dating of Speleothems. Geochronometria, 32: 1-12. 
  • Porowski A., Kowski P., 2008. Determination of dD and d18O in saline oil-associated waters: The question of the simple vacuum distillation of water samples prior to isotopic analyses. Isotopes in Environmental and Health Studies, 44: 227-238. 


2007

 

  • Głowniak E., Wierzbowski H., 2007. Comment on "The mid-Oxfordian (Late Jurassic) positive carbon-isotope excursion recognised from fossil wood in the British Isles" by C.R. Pearce, S.P. Hesselbo, A.L. Coe. Palaeogeography, Palaeoclimatology, Palaeoecology, 221: 343-357. 
  • Jurewicz E., Hercman H., Nejbert K., 2007. Flowstone-like calcite in the andesite of Jarmuta Mt. - dating the Holocene tectonic activity in the vicinity of Szczawnica (Magura Nappe, Outer Carpathians, Poland). Acta Geologica Polonica, 57: 187-204. 
  • Leśniak P.M., 2007. Comment on the paper "Sulphur isotopic composition of H2S and SO42- from mineral springs in the Polish Carpathians" of L. Rajchel, J. Rajchel, J. Szaran, S. Hałas. Isotopes in Environmental and Health Studies, 43: 75-77. 
  • Mirosław-Grabowska J., Niska M., 2007. Isotope and Cladocera data and interpretation from the Eemian optimum and postoptimum deposits, Kaliska palaeolake (Central Poland). Quaternary International, 175: 155-167. 
  • Mirosław-Grabowska J., Niska M., 2007 Reconstruction of environmental conditions of Eemian palaeolake at Studzieniec (Central Poland) on the basis of stable isotope and Cladocera analyses.Quaternary International, 162-163: 195-204. 
  • Wierzbowski H., 2007. Effects of pre-treatments and organic matter on oxygen and carbon isotope analyses of skeletal and inorganic calcium carbonate. International Journal of Mass Spectrometry, 268: 16-29. 
  • Wierzbowski H., Joachimski M., 2007. Reconstruction of late Bajocian-Bathonian marine palaeoenvironments using carbon and oxygen isotope ratios of calcareous fossils from the Polish Jura Chain (central Poland). Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 523-540. 


2006

 

  • Boguckyj A., Łanczont M., Łącka B., Madeyska T., Zawidzki P., 2006. Stable isotopic composition of carbonates in Quaternary sediments of the Skala Podil'ska sequence (Ukraine). Quaternary International, 152-153: 3-13. 
  • Leśniak P.M., Zawidzki P., 2006. Determination of carbon fractionation factor between carbonate and CO2(g) in two-direction isotope equilibration. Chemical Geology, 231: 203-213. 
  • Sienkiewicz E., Gąsiorowski M., Hercman H., 2006. Is acid rain impacting the Sudetic lakes? Science of the Total Environment, 369: 139-149. 

Method description

 

KIEL IV Carbonate Device

Oxygen and carbon isotopes in carbonates

Stable isotopic composition of oxygen and carbon in carbonates is determined using a Thermo KIEL IV Carbonate Device connected to a Finnigan Delta Plus isotope ratio mass spectrometer in a Dual Inlet system. CO2 is extracted from carbonates using the method described by McCrea (1950). Sample (minimum weight 20 µg) is reacted with orthophosphoric acid (density 1.94 g/dm3) at 70 °C. International standard NBS 19 is analyzed per every ten samples. Isotope ratios are reported as delta (δ) values and expressed relative to VPDB standard. 

Measurement precision: 
Standard deviation (1σ) δ13C ± 0.03‰ 
Standard deviation (1σ) δ18O ± 0.07‰ 

McCrea, J.M. (1950): The isotopic chemistry of carbonates and a paleo-temperature scale. J. Chem. Phys. 18: 849-857.

Flash EA 1112HT

Nitrogen and carbon isotopes in organic and inorganic solid samples

Stable isotopic composition of nitrogen and carbon is determined using a Thermo Flash EA 1112HT elemental analyzer connected to a Thermo Delta V Advantage isotope ratio mass spectrometer in a Continuous Flow system. Minimal weight of samples depends on the wt% amount of both elements. Samples wrapped in tin capsules are combusted at 1020 °C. Released gases (CO2 and N2 ) split in a GC column are transferred to MS source through a capillary. Isotope ratios are reported as delta (δ) values and expressed relative to VPDB for δ13C and to atmospheric nitrogen for δ15N. Delta values are normalized to a calibration curve based on international standards USGS 40, USGS 41, IAEA 600. 

Measurement precision:
Standard deviation (1σ) δ13C ± 0.33‰
Standard deviation (1σ) δ15N ± 0.43‰

Oxygen isotopes in phosphates​​​​​​​

Stable isotope composition of oxygen in phosphates is determined using a Thermo Flash EA 1112HT elemental analyzer connected to a Thermo Delta V Advantage isotope ratio mass spectrometer in a Continuous Flow system. The minimal weight of sample is ca. 400 µg. Samples wrapped in silver capsules are pyrolyzed at 1450 °C. Released gas (CO) is transferred to MS source through a capillary. Isotope ratios are reported as delta (δ) values and expressed relative to VSMOW. Delta values are normalized to a calibration curve based on internal standards UMCS 1, UMCS 2 and international standard B 2207.

Measurement precision:
Standard deviation (1σ) δ18O ± 0.3‰

Sulfur isotopes in sulfates​​​​​​​

Stable isotopic composition of sulfur in sulfates is determined using a Thermo Flash EA 1112HT elemental analyzer connected to a Thermo Delta V Advantage isotope ratio mass spectrometer in a Continuous Flow system. The minimal weight of sample is ca. 400 µg plus 10-fold quantity of V2O5. Samples wrapped in tin capsules are combusted at 1020 °C. Released gas (SO2) is transferred to MS source through a capillary. Isotope ratio is reported as delta (δ) values and expressed relative to VCDT. Delta values are normalized to a calibration curve based on international standards NBS 127, IAEA SO-5, IAEA SO-6.

Measurement precision:
Standard deviation (1σ) δ34S ± 0.3‰

Oxygen isotopes in sulfates​​​​​​​

Stable isotopic composition of oxygen in sulfates is determined using a Thermo Flash EA 1112HT elemental analyzer connected to a Thermo Delta V Advantage isotope ratio mass spectrometer in a Continuous Flow system. The minimal weight of sample is ca. 400 µg. Samples wrapped in silver capsules are pyrolyzed at 1450 °C. Released gas (CO) is transferred to MS source through a capillary. Isotope ratios are reported as delta (δ) values and expressed relative to VSMOW. Delta values are normalized to a calibration curve based on international standards NBS 127, IAEA SO-5, IAEA SO-6.

Measurement precision:
Standard deviation (1σ) δ18O ± 0.5‰

Sulfur isotopes in sulfides

Stable isotopic composition of sulfur in sulfides is determined using a Thermo Flash EA 1112HT elemental analyzer connected to a Thermo Delta V Advantage isotope ratio mass spectrometer in a Continuous Flow system. The minimal weight of sample is ca. 400 µg plus 10-fold quantity of V2O5. Samples wrapped in tin capsules are combusted at 1020 °C. Released gas (SO2) is transferred to MS source through a capillary. Isotope ratios are reported as delta (δ) values and expressed relative to VCDT. Delta values are normalized to a calibration curve based on international standards IAEA S-1, IAEA S-2, IAEA S-3.

Measurement precision:
Standard deviation (1σ) δ34S ± 0.2‰

GasBench II

Isotopic composition of Dissolved Inorganic Carbon in water​​​​​​​

Stable isotopic composition of Dissolved Inorganic Carbon in water is determined using a Thermo GasBench II connected to a Thermo MAT 253 isotope ratio mass spectrometer in a Continuous Flow system. 0,8 ml of sample is equilibrated during 18 hours at 70 °C prior to analysis. Isotope ratios are reported as delta (δ) values and expressed relative to VPDB for δ13C. Delta values are normalized to a calibration curve based on international standards NBS 19, NBS 18, LSVEC.

Measurement precision:
Standard deviation (1σ) δ13C ± 0.2‰

Oxygen isotopes in water​​​​​​​

Isotopic composition of oxygen in water is determined using a Thermo GasBench II connected to a Thermo MAT 253 isotope ratio mass spectrometer in a Continuous Flow system. 0.5 ml of sample is equilibrated during 18 hours at 32 °C prior to analysis. Isotope ratios are reported as delta (δ) values and expressed relative to VSMOW for δ18O. Delta values are normalized to a calibration curve based on standards GISP, W6444, W 67400.

Measurement precision:
Standard deviation (1σ) δ18O ± 0.25‰

HDevice

Hydrogen isotopes in water

Stable isotopic composition of hydrogen in water is determined using a Thermo HDevice connected to a Thermo MAT 253 isotope ratio mass spectrometer in a Dual Inlet system. 1,2 µl of sample is reduced in chromium reactor at 850 °C prior to analysis. Isotope ratios are reported as delta (δ) values and expressed relative to VSMOW for δ2H. Delta values are normalized to a calibration curve based on standards GISP, W6444, W 67400. H3+ factor is determined every sequence run.

Measurement precision:
Standard deviation (1σ) δ2H ± 1‰

Spectrophotometer UV-VIS DR 6000 with RFID (Hach) technology

Chemical composition of water

For measurement of the total concentration of chlorides, sulphates, nitrates, nitrites, phosphates, organic acids, chromium, aluminum and others in water samples.

PICARRO (CRDS) analyzer

CH4 and CO2 in gas

Measurement of the total concentration and C stable isotope composition of CH4 and CO2 in a continuous mode (monitoring) or in samples with CO2 concentration in a range of 200-4000 ppm and CH4 concentration in a range of 1,2-2000 ppm; can be used in field.